These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36511643)

  • 21. Wide vessels sustain marginal transpiration flux and do not optimize inefficient gas exchange activity under impaired hydraulic control and salinity.
    Jerszurki D; Sperling O; Parthasarathi T; Lichston JE; Yaaran A; Moshelion M; Rachmilevitch S; Lazarovitch N
    Physiol Plant; 2020 Sep; 170(1):60-74. PubMed ID: 32303105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microgravity does not alter plant stand gas exchange of wheat at moderate light levels and saturating CO2 concentration.
    Monje O; Stutte G; Chapman D
    Planta; 2005 Oct; 222(2):336-45. PubMed ID: 15968511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ion-dependent metabolic responses of Vicia faba L. to salt stress.
    Richter JA; Behr JH; Erban A; Kopka J; Zörb C
    Plant Cell Environ; 2019 Jan; 42(1):295-309. PubMed ID: 29940081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant morphophysiological and anatomical factors associated with nitrous oxide flux from wheat (Triticum aestivum).
    Baruah KK; Gogoi B; Borah L; Gogoi M; Boruah R
    J Plant Res; 2012 Jul; 125(4):507-16. PubMed ID: 22146810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity.
    Abebe T; Guenzi AC; Martin B; Cushman JC
    Plant Physiol; 2003 Apr; 131(4):1748-55. PubMed ID: 12692333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can elevated CO(2) improve salt tolerance in olive trees?
    Melgar JC; Syvertsen JP; García-Sánchez F
    J Plant Physiol; 2008 Apr; 165(6):631-40. PubMed ID: 17728014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Approaches to increasing the salt tolerance of wheat and other cereals.
    Munns R; James RA; Läuchli A
    J Exp Bot; 2006; 57(5):1025-43. PubMed ID: 16510517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter.
    Sharma DK; Andersen SB; Ottosen CO; Rosenqvist E
    Physiol Plant; 2015 Feb; 153(2):284-98. PubMed ID: 24962705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Boron supply into wheat (Triticum aestivum L. cv. Wilgoyne) ears whilst still enclosed within leaf sheaths.
    Huang L; Bell RW; Dell B
    J Exp Bot; 2001 Aug; 52(361):1731-8. PubMed ID: 11479339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xylem-phloem hydraulic coupling explains multiple osmoregulatory responses to salt stress.
    Perri S; Katul GG; Molini A
    New Phytol; 2019 Oct; 224(2):644-662. PubMed ID: 31349369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand.
    Kudoyarova G; Veselova S; Hartung W; Farhutdinov R; Veselov D; Sharipova G
    Planta; 2011 Jan; 233(1):87-94. PubMed ID: 20924765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abscisic acid metabolic genes of wheat (Triticum aestivum L.): identification and insights into their functionality in seed dormancy and dehydration tolerance.
    Son S; Chitnis VR; Liu A; Gao F; Nguyen TN; Ayele BT
    Planta; 2016 Aug; 244(2):429-47. PubMed ID: 27091738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study.
    Tausz-Posch S; Norton RM; Seneweera S; Fitzgerald GJ; Tausz M
    Physiol Plant; 2013 Jun; 148(2):232-45. PubMed ID: 23035842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydathode trichomes actively secreting water from leaves play a key role in the physiology and evolution of root-parasitic rhinanthoid Orobanchaceae.
    Světlíková P; Hájek T; Těšitel J
    Ann Bot; 2015 Jul; 116(1):61-8. PubMed ID: 25987711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.
    Zhu J; Dai Z; Vivin P; Gambetta GA; Henke M; Peccoux A; Ollat N; Delrot S
    Ann Bot; 2018 Apr; 121(5):833-848. PubMed ID: 29293870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of transpiration on foliar accumulation of salt and nutrients under salinity in poplar (Populus × canescens).
    Sharmin S; Lipka U; Polle A; Eckert C
    PLoS One; 2021; 16(6):e0253228. PubMed ID: 34166404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in root hydraulic conductivity facilitate the overall hydraulic response of rice (Oryza sativa L.) cultivars to salt and osmotic stress.
    Meng D; Fricke W
    Plant Physiol Biochem; 2017 Apr; 113():64-77. PubMed ID: 28189051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration.
    Ehlert C; Maurel C; Tardieu F; Simonneau T
    Plant Physiol; 2009 Jun; 150(2):1093-104. PubMed ID: 19369594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct measurement of sodium and potassium in the transpiration stream of salt-excluding and non-excluding varieties of wheat.
    Watson R; Pritchard J; Malone M
    J Exp Bot; 2001 Sep; 52(362):1873-81. PubMed ID: 11520876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water relations, gas exchange, and nutrient response to a long term constant water deficit.
    Berry WL; Goldstein G; Dreschel TW; Wheeler RM; Sager JC; Knott WM
    Soil Sci; 1992 Jun; 153(6):442-51. PubMed ID: 11538048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.