These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3651178)

  • 1. The binding of acetaldehyde to the active site of ribonuclease: alterations in catalytic activity and effects of phosphate.
    Mauch TJ; Tuma DJ; Sorrell MF
    Alcohol Alcohol; 1987; 22(2):103-12. PubMed ID: 3651178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent binding of acetaldehyde selectively inhibits the catalytic activity of lysine-dependent enzymes.
    Mauch TJ; Donohue TM; Zetterman RK; Sorrell MF; Tuma DJ
    Hepatology; 1986; 6(2):263-9. PubMed ID: 2937708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional consequences of acetaldehyde binding to proteins.
    Tuma DJ; Sorrell MF
    Alcohol Alcohol Suppl; 1987; 1():61-6. PubMed ID: 3122776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chemistry of acetaldehyde-protein adducts.
    Tuma DJ; Hoffman T; Sorrell MF
    Alcohol Alcohol Suppl; 1991; 1():271-6. PubMed ID: 1845549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Interaction of pyridoxal-5-phosphate with human serum albumin and pancreatic ribonuclease].
    Moroz AR; Kondakov VI; Stepuro II; Iaroshevich NA
    Biokhimiia; 1987 Apr; 52(4):550-61. PubMed ID: 3593789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of a new nonfluorescent malondialdehyde-acetaldehyde-protein adduct by 13C NMR spectroscopy.
    Kearley ML; Patel A; Chien J; Tuma DJ
    Chem Res Toxicol; 1999 Jan; 12(1):100-5. PubMed ID: 9894024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibodies made against a formaldehyde-protein adduct cross react with an acetaldehyde-protein adduct. Implications for the origin of antibodies in human serum which recognize acetaldehyde-protein adducts.
    Pietrzak ER; Shanley BC; Kroon PA
    Alcohol Alcohol; 1995 May; 30(3):373-8. PubMed ID: 7545992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleoside-amino acid conjugates: An alternative route to the design of ribonuclease A inhibitors.
    Debnath J; Dasgupta S; Pathak T
    Bioorg Med Chem; 2009 Jul; 17(14):4921-7. PubMed ID: 19540766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics.
    Rozovsky S; Jogl G; Tong L; McDermott AE
    J Mol Biol; 2001 Jun; 310(1):271-80. PubMed ID: 11419952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of the backbone dynamics of ribonuclease A in the ground state and bound to the inhibitor 5'-phosphothymidine (3'-5')pyrophosphate adenosine 3'-phosphate.
    Kovrigin EL; Cole R; Loria JP
    Biochemistry; 2003 May; 42(18):5279-91. PubMed ID: 12731869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coulombic effects of remote subsites on the active site of ribonuclease A.
    Fisher BM; Schultz LW; Raines RT
    Biochemistry; 1998 Dec; 37(50):17386-401. PubMed ID: 9860854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent binding of acetaldehyde to tubulin: evidence for preferential binding to the alpha-chain.
    Jennett RB; Sorrell MF; Johnson EL; Tuma DJ
    Arch Biochem Biophys; 1987 Jul; 256(1):10-8. PubMed ID: 3606116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decavanadate inhibits catalysis by ribonuclease A.
    Messmore JM; Raines RT
    Arch Biochem Biophys; 2000 Sep; 381(1):25-30. PubMed ID: 11019816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Endonuclease activity of recombinant pancreatic nuclease (A-K7H)].
    Ljuca F; Moussaoui M; Boix E; Nogues V; Ljuca D; Cuchillo CM
    Med Arh; 1999; 53(2):69-71. PubMed ID: 10386039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Catalytic properties of recombinant pancreatic ribonuclease A-K7H].
    Ljuca F; Moussaoui M; Boix E; Nogues V; Ljuca D; Cuchillo CM
    Med Arh; 1999; 53(4):189-91. PubMed ID: 10593114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxynaphthaldehyde phosphate derivatives as potent covalent Schiff base inhibitors of fructose-1,6-bisphosphate aldolase.
    Dax C; Coinçon M; Sygusch J; Blonski C
    Biochemistry; 2005 Apr; 44(14):5430-43. PubMed ID: 15807536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some evidence suggesting the existence of P2 and B3 sites in the active site of bovine pancreatic ribonuclease A.
    Irie M; Watanabe H; Ohgi K; Tobe M; Matsumura G; Arata Y; Hirose T; Inayama S
    J Biochem; 1984 Mar; 95(3):751-9. PubMed ID: 6725232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms.
    Shimotakahara S; Rios CB; Laity JH; Zimmerman DE; Scheraga HA; Montelione GT
    Biochemistry; 1997 Jun; 36(23):6915-29. PubMed ID: 9188686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the potential of 3'-O-carboxy esters of thymidine as inhibitors of ribonuclease A and angiogenin.
    Ghosh KS; Debnath J; Dutta P; Sahoo BK; Dasgupta S
    Bioorg Med Chem; 2008 Mar; 16(6):2819-28. PubMed ID: 18226913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.