These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3651178)

  • 21. Effect of glutaredoxin and protein disulfide isomerase on the glutathione-dependent folding of ribonuclease A.
    Ruoppolo M; Lundström-Ljung J; Talamo F; Pucci P; Marino G
    Biochemistry; 1997 Oct; 36(40):12259-67. PubMed ID: 9315864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 113Cd NMR of Cd(II)-substituted Zn(II) metalloenzymes.
    Gettins P; Coleman JE
    Fed Proc; 1982 Nov; 41(13):2966-73. PubMed ID: 7140997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of active site residues in Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase.
    Naught LE; Regni C; Beamer LJ; Tipton PA
    Biochemistry; 2003 Aug; 42(33):9946-51. PubMed ID: 12924943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.
    Yang G; Liu RQ; Taylor KL; Xiang H; Price J; Dunaway-Mariano D
    Biochemistry; 1996 Aug; 35(33):10879-85. PubMed ID: 8718880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member.
    Parducci RE; Cabrera R; Baez M; Guixé V
    Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reductive methylation of the lysyl residues in the fd gene 5 DNA-binding protein: CD and 13C NMR results on the modified protein.
    Gray DM; Sherry AD; Teherani J; Kansy JW
    J Biomol Struct Dyn; 1984 Aug; 2(1):77-91. PubMed ID: 6443884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional structure of a human pancreatic ribonuclease variant, a step forward in the design of cytotoxic ribonucleases.
    Pous J; Canals A; Terzyan SS; Guasch A; Benito A; Ribó M; Vilanova M; Coll M
    J Mol Biol; 2000 Oct; 303(1):49-60. PubMed ID: 11021969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose.
    Watkins NG; Thorpe SR; Baynes JW
    J Biol Chem; 1985 Sep; 260(19):10629-36. PubMed ID: 4030761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton-magnetic-resonance studies of the lysine residues of ribonuclease A.
    Brown LR; Bradbury JH
    Eur J Biochem; 1975 May; 54(1):219-27. PubMed ID: 238843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 13C NMR investigation of nonenzymatic glucosylation of protein. Model studies using RNase A.
    Neglia CI; Cohen HJ; Garber AR; Ellis PD; Thorpe SR; Baynes JW
    J Biol Chem; 1983 Dec; 258(23):14279-83. PubMed ID: 6643480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinical implications of acetaldehyde adducts with hemoglobin.
    Peterson CM; Nguyen LB
    Prog Clin Biol Res; 1985; 183():19-30. PubMed ID: 3901019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [13C]Methylated ribonuclease A. 13C NMR studies of the interaction of lysine 41 with active site ligands.
    Jentoft JE; Gerken TA; Jentoft N; Dearborn DG
    J Biol Chem; 1981 Jan; 256(1):231-6. PubMed ID: 6256347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of glycated proteins by 13C NMR spectroscopy. Identification of specific sites of protein modification by glucose.
    Neglia CI; Cohen HJ; Garber AR; Thorpe SR; Baynes JW
    J Biol Chem; 1985 May; 260(9):5406-10. PubMed ID: 2985592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaction of acetaldehyde with hemoglobin.
    San George RC; Hoberman HD
    J Biol Chem; 1986 May; 261(15):6811-21. PubMed ID: 3700416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the Bacillus cereus phosphonoacetaldehyde hydrolase. Evidence for a Schiff base mechanism and sequence analysis of an active-site peptide containing the catalytic lysine residue.
    Olsen DB; Hepburn TW; Moos M; Mariano PS; Dunaway-Mariano D
    Biochemistry; 1988 Mar; 27(6):2229-34. PubMed ID: 3132206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ternary borate-nucleoside complex stabilization by ribonuclease A demonstrates phosphate mimicry.
    Gabel SA; London RE
    J Biol Inorg Chem; 2008 Feb; 13(2):207-17. PubMed ID: 17957392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of phosphate on the kinetics and specificity of glycation of protein.
    Watkins NG; Neglia-Fisher CI; Dyer DG; Thorpe SR; Baynes JW
    J Biol Chem; 1987 May; 262(15):7207-12. PubMed ID: 3584112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Covalent binding of acetaldehyde to proteins: participation of lysine residues.
    Tuma DJ; Newman MR; Donohue TM; Sorrell MF
    Alcohol Clin Exp Res; 1987 Dec; 11(6):579-84. PubMed ID: 3124658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The contribution of noncatalytic phosphate-binding subsites to the mechanism of bovine pancreatic ribonuclease A.
    Nogués MV; Moussaoui M; Boix E; Vilanova M; Ribó M; Cuchillo CM
    Cell Mol Life Sci; 1998 Aug; 54(8):766-74. PubMed ID: 9760985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of acetaldehyde-protein adduct formation by L-ascorbate.
    Tuma DJ; Donohue TM; Medina VA; Sorrell MF
    Arch Biochem Biophys; 1984 Nov; 234(2):377-81. PubMed ID: 6093697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.