BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 36512288)

  • 1. Virtual Reality for Spatial Navigation.
    Jeung S; Hilton C; Berg T; Gehrke L; Gramann K
    Curr Top Behav Neurosci; 2023; 65():103-129. PubMed ID: 36512288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential of virtual reality for spatial navigation research across the adult lifespan.
    Diersch N; Wolbers T
    J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control.
    Schöberl F; Zwergal A; Brandt T
    Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desktop VR Is Better Than Non-ambulatory HMD VR for Spatial Learning.
    Srivastava P; Rimzhim A; Vijay P; Singh S; Chandra S
    Front Robot AI; 2019; 6():50. PubMed ID: 33501066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eyes-free Target Acquisition During Walking in Immersive Mixed Reality.
    Zhou Q; Yu D; Reinoso MN; Newn J; Goncalves J; Velloso E
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3423-3433. PubMed ID: 32941144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting real world spatial disorientation in Alzheimer's disease patients using virtual reality navigation tests.
    Puthusseryppady V; Morrissey S; Spiers H; Patel M; Hornberger M
    Sci Rep; 2022 Aug; 12(1):13397. PubMed ID: 35927285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Much of What We Learn in Virtual Reality Transfers to Real-World Navigation?
    Hejtmanek L; Starrett M; Ferrer E; Ekstrom AD
    Multisens Res; 2020 Mar; 33(4-5):479-503. PubMed ID: 31972540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile brain/body imaging of landmark-based navigation with high-density EEG.
    Delaux A; de Saint Aubert JB; Ramanoël S; Bécu M; Gehrke L; Klug M; Chavarriaga R; Sahel JA; Gramann K; Arleo A
    Eur J Neurosci; 2021 Dec; 54(12):8256-8282. PubMed ID: 33738880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Tricking the Brain" Using Immersive Virtual Reality: Modifying the Self-Perception Over Embodied Avatar Influences Motor Cortical Excitability and Action Initiation.
    Buetler KA; Penalver-Andres J; Özen Ö; Ferriroli L; Müri RM; Cazzoli D; Marchal-Crespo L
    Front Hum Neurosci; 2021; 15():787487. PubMed ID: 35221950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embodied virtual reality for the study of real-world motor learning.
    Haar S; Sundar G; Faisal AA
    PLoS One; 2021; 16(1):e0245717. PubMed ID: 33503022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance.
    Coutrot A; Schmidt S; Coutrot L; Pittman J; Hong L; Wiener JM; Hölscher C; Dalton RC; Hornberger M; Spiers HJ
    PLoS One; 2019; 14(3):e0213272. PubMed ID: 30883560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multisensory input modulates memory-guided spatial navigation in humans.
    Iggena D; Jeung S; Maier PM; Ploner CJ; Gramann K; Finke C
    Commun Biol; 2023 Nov; 6(1):1167. PubMed ID: 37963986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying the Effect of Display Type and Viewing Perspective on User Experience in Virtual Reality Exergames.
    Xu W; Liang HN; Zhang Z; Baghaei N
    Games Health J; 2020 Dec; 9(6):405-414. PubMed ID: 32074463
    [No Abstract]   [Full Text] [Related]  

  • 14. Measuring trust with the Wayfinding Task: Implementing a novel task in immersive virtual reality and desktop setups across remote and in-person test environments.
    Clements MF; Brübach L; Glazov J; Gu S; Kashif R; Catmur C; Georgescu AL
    PLoS One; 2023; 18(11):e0294420. PubMed ID: 38015928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wayfinding and path integration deficits detected using a virtual reality mobile app in patients with traumatic brain injury.
    Seton C; Coutrot A; Hornberger M; Spiers HJ; Knight R; Whyatt C
    PLoS One; 2023; 18(3):e0282255. PubMed ID: 36893089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Virtual Navigation Toolbox: Providing tools for virtual navigation experiments.
    Müller MM; Scherer J; Unterbrink P; Bertrand OJN; Egelhaaf M; Boeddeker N
    PLoS One; 2023; 18(11):e0293536. PubMed ID: 37943845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D virtual reality vs. 2D desktop registration user interface comparison.
    Bueckle A; Buehling K; Shih PC; Börner K
    PLoS One; 2021; 16(10):e0258103. PubMed ID: 34705835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age differences in spatial memory are mitigated during naturalistic navigation.
    Hill PF; Bermudez S; McAvan AS; Garren JD; Grilli MD; Barnes CA; Ekstrom AD
    bioRxiv; 2023 Oct; ():. PubMed ID: 36747699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing spatial navigation skills in mild cognitive impairment patients: a usability study of a new version of ANTaging software.
    Stramba-Badiale C; Tuena C; Goulene KM; Cipresso P; Morelli S; Rossi M; D'Avenio G; Stramba-Badiale M; Riva G
    Front Hum Neurosci; 2023; 17():1310375. PubMed ID: 38259329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspective: Assessing the Flexible Acquisition, Integration, and Deployment of Human Spatial Representations and Information.
    Starrett MJ; Ekstrom AD
    Front Hum Neurosci; 2018; 12():281. PubMed ID: 30050422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.