These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 36512762)
1. Chemical Preintercalation Synthesis of Versatile Electrode Materials for Electrochemical Energy Storage. Pomerantseva E Acc Chem Res; 2023 Jan; 56(1):13-24. PubMed ID: 36512762 [TBL] [Abstract][Full Text] [Related]
2. Hybrid bilayered vanadium oxide electrodes with large and tunable interlayer distances in lithium-ion batteries. Zhang X; Andris R; Averianov T; Zachman MJ; Pomerantseva E J Colloid Interface Sci; 2024 Nov; 674():612-623. PubMed ID: 38945028 [TBL] [Abstract][Full Text] [Related]
3. Dual Strategies of Metal Preintercalation and In Situ Electrochemical Oxidization Operating on MXene for Enhancement of Ion/Electron Transfer and Zinc-Ion Storage Capacity in Aqueous Zinc-Ion Batteries. Li Z; Wei Y; Liu Y; Yan S; Wu M Adv Sci (Weinh); 2023 Mar; 10(8):e2206860. PubMed ID: 36646513 [TBL] [Abstract][Full Text] [Related]
4. Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects. Zhao Q; Song A; Ding S; Qin R; Cui Y; Li S; Pan F Adv Mater; 2020 Dec; 32(50):e2002450. PubMed ID: 33165987 [TBL] [Abstract][Full Text] [Related]
5. MXene as a Charge Storage Host. Okubo M; Sugahara A; Kajiyama S; Yamada A Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564 [TBL] [Abstract][Full Text] [Related]
6. The effect of chemically preintercalated alkali ion on structure of layered titanates and their electrochemistry in aqueous energy storage systems. Mukherjee S; Quilty CD; Yao S; Stackhouse CA; Wang L; Takeuchi KJ; Takeuchi ES; Wang F; Marschilok AC; Pomerantseva E J Mater Chem A Mater; 2020 Sep; 8(35):18220-18231. PubMed ID: 34413977 [TBL] [Abstract][Full Text] [Related]
7. Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage. Fleischmann S; Tolosa A; Presser V Chemistry; 2018 Aug; 24(47):12143-12153. PubMed ID: 29672971 [TBL] [Abstract][Full Text] [Related]
8. High Power Energy Storage via Electrochemically Expanded and Hydrated Manganese-Rich Oxides. Boyd S; Geise NR; Toney MF; Augustyn V Front Chem; 2020; 8():715. PubMed ID: 32974280 [TBL] [Abstract][Full Text] [Related]
10. Interlayer Modulation of Layered Transition Metal Compounds for Energy Storage. Chen T; Xue L; Shi Z; Qiu C; Sun M; Zhao Y; Liu J; Ni M; Li H; Xu J; Xia H ACS Appl Mater Interfaces; 2022 Dec; 14(49):54369-54388. PubMed ID: 36459661 [TBL] [Abstract][Full Text] [Related]
11. Chemical Heterointerface Engineering on Hybrid Electrode Materials for Electrochemical Energy Storage. Li W; Song Q; Li M; Yuan Y; Zhang J; Wang N; Yang Z; Huang J; Lu J; Li X Small Methods; 2021 Aug; 5(8):e2100444. PubMed ID: 34927864 [TBL] [Abstract][Full Text] [Related]
12. Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications. Yu L; Wu HB; Lou XW Acc Chem Res; 2017 Feb; 50(2):293-301. PubMed ID: 28128931 [TBL] [Abstract][Full Text] [Related]
13. Stable alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries. Zhao Y; Han C; Yang J; Su J; Xu X; Li S; Xu L; Fang R; Jiang H; Zou X; Song B; Mai L; Zhang Q Nano Lett; 2015 Mar; 15(3):2180-5. PubMed ID: 25654208 [TBL] [Abstract][Full Text] [Related]
14. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion. Yang S; Bachman RE; Feng X; Müllen K Acc Chem Res; 2013 Jan; 46(1):116-28. PubMed ID: 23110511 [TBL] [Abstract][Full Text] [Related]
15. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Liang Y; Yoo HD; Li Y; Shuai J; Calderon HA; Robles Hernandez FC; Grabow LC; Yao Y Nano Lett; 2015 Mar; 15(3):2194-202. PubMed ID: 25706101 [TBL] [Abstract][Full Text] [Related]
16. Cobalt Ion-Stabilized VO Chen Q; Tang Z; Li H; Liang W; Zeng Y; Zhang J; Hou G; Tang Y ACS Appl Mater Interfaces; 2024 Apr; 16(15):18824-18832. PubMed ID: 38566471 [TBL] [Abstract][Full Text] [Related]
17. Systematic Study of Alkali Cations Intercalated Titanium Dioxide Effect on Sodium and Lithium Storage. Huang M; Xi B; Shi N; Wei R; Li H; Feng J; Xiong S Small; 2020 Aug; 16(33):e2001391. PubMed ID: 32686317 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical Thin Layers in Nanostructures for Energy Storage. Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834 [TBL] [Abstract][Full Text] [Related]
19. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage. Kwon G; Ko Y; Kim Y; Kim K; Kang K Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126 [TBL] [Abstract][Full Text] [Related]
20. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Wang H; Dai H Chem Soc Rev; 2013 Apr; 42(7):3088-113. PubMed ID: 23361617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]