These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36512947)

  • 21. Metal-rich hyperaccumulator-derived biochar as an efficient persulfate activator: Role of intrinsic metals (Fe, Mn and Zn) in regulating characteristics, performance and reaction mechanisms.
    Wang X; Zhang P; Wang C; Jia H; Shang X; Tang J; Sun H
    J Hazard Mater; 2022 Feb; 424(Pt A):127225. PubMed ID: 34600381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corncob-derived activated carbon for roxarsone removal from aqueous solution: isotherms, kinetics, and mechanism.
    Yu X; Han X; Chang C; Hu Y; Xu CC; Fang S
    Environ Sci Pollut Res Int; 2020 May; 27(13):15785-15797. PubMed ID: 32088818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Active Manganese Oxide from Electrolytic Manganese Anode Slime for Efficient Removal of Antibiotics Induced by Dissociation of Peroxymonosulfate.
    Zhang H; Xiong R; Peng S; Xu D; Ke J
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sorption of roxarsone onto soils with different physicochemical properties.
    Fu QL; He JZ; Blaney L; Zhou DM
    Chemosphere; 2016 Sep; 159():103-112. PubMed ID: 27281543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply.
    Yao L; Li G; Dang Z; Yang B; He Z; Zhou C
    Environ Toxicol Chem; 2010 Apr; 29(4):947-51. PubMed ID: 20821525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Highly Selective and Sensitive Fluorescent Sensor Based on Molecularly Imprinted Polymer-Functionalized Mn-Doped ZnS Quantum Dots for Detection of Roxarsone in Feeds.
    Li F; Gao J; Wu H; Li Y; He X; Chen L
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of roxarsone in UV-based advanced oxidation processes: A comparative study.
    Chen L; Li H; Qian J
    J Hazard Mater; 2021 May; 410():124558. PubMed ID: 33223319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. UV irradiation and UV-H₂O₂ advanced oxidation of the roxarsone and nitarsone organoarsenicals.
    Adak A; Mangalgiri KP; Lee J; Blaney L
    Water Res; 2015 Mar; 70():74-85. PubMed ID: 25514660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Characterizing the interaction between roxarsone and humic acid by fluorescence quenching experiment].
    Zhu JP; Mei T; Peng Y; Ge SY; Li SY; Wang GX
    Huan Jing Ke Xue; 2014 Jul; 35(7):2620-6. PubMed ID: 25244846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide.
    Xie X; Cheng H
    Environ Int; 2019 Jun; 127():730-741. PubMed ID: 31003056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2D sheet structure of zinc molybdate decorated on MXene for highly selective and sensitive electrochemical detection of the arsenic drug Roxarsone in water samples.
    Baskaran N; Prasanna SB; Jeyaram K; Lin YC; Govindasamy M; Wei Y; Chung RJ
    Chemosphere; 2024 Sep; 364():143188. PubMed ID: 39187027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roxarsone binding to soil-derived dissolved organic matter: Insights from multi-spectroscopic techniques.
    Fu QL; He JZ; Blaney L; Zhou DM
    Chemosphere; 2016 Jul; 155():225-233. PubMed ID: 27115847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions.
    Shi L; Wang W; Yuan SJ; Hu ZH
    Environ Sci Technol; 2014 Jul; 48(14):7951-8. PubMed ID: 24937023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative cytotoxicity and accumulation of Roxarsone and its photodegradates in freshwater Protozoan Tetrahymenathermophila.
    Zhang W; Xu F; Han J; Sun Q; Yang K
    J Hazard Mater; 2015 Apr; 286():171-8. PubMed ID: 25577319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roxarsone transformation and its impacts on soil enzyme activity in paddy soils: A new insight into water flooding effects.
    Zhao YP; Cui JL; Fang LP; An YL; Gan SC; Guo PR; Chen JH
    Environ Res; 2021 Nov; 202():111636. PubMed ID: 34245733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soil attribute regulates assimilation of roxarsone metabolites by rice (Oryza sativa L.).
    Yao L; Carey MP; Zhong J; Bai C; Zhou C; Meharg AA
    Ecotoxicol Environ Saf; 2019 Nov; 184():109660. PubMed ID: 31520949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing Roxarsone Degradation and
    Tang R; Prommer H; Yuan S; Wang W; Sun J; Jamieson J; Hu ZH
    Environ Sci Technol; 2021 Jan; 55(1):393-401. PubMed ID: 33301302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1.
    Huang K; Peng H; Gao F; Liu Q; Lu X; Shen Q; Le XC; Zhao FJ
    Environ Pollut; 2019 Apr; 247():482-487. PubMed ID: 30703681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway.
    Li Z; Sun Y; Yang Y; Han Y; Wang T; Chen J; Tsang DCW
    Environ Res; 2020 Apr; 183():109156. PubMed ID: 32000003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of persulfate activation by biochar for the catalytic degradation of antibiotics: Synergistic effects of environmentally persistent free radicals and the defective structure of biochar.
    Zhang Y; Xu M; Liang S; Feng Z; Zhao J
    Sci Total Environ; 2021 Nov; 794():148707. PubMed ID: 34214814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.