BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 36513142)

  • 1. Dipyridamole interacts with the N-terminal domain of HSP90 and antagonizes the function of the chaperone in multiple cancer cell lines.
    Gao J; Zhou C; Zhong Y; Shi L; Luo X; Su H; Li M; Xu Y; Zhang N; Zhou H
    Biochem Pharmacol; 2023 Jan; 207():115376. PubMed ID: 36513142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the entry region of Hsp90's ATP binding pocket with a novel 6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl amide.
    Jeong JH; Oh YJ; Lho Y; Park SY; Liu KH; Ha E; Seo YH
    Eur J Med Chem; 2016 Nov; 124():1069-1080. PubMed ID: 27783977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternate strategies of Hsp90 modulation for the treatment of cancer and other diseases.
    Brandt GE; Blagg BS
    Curr Top Med Chem; 2009; 9(15):1447-61. PubMed ID: 19860731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticancer Inhibitors of Hsp90 Function: Beyond the Usual Suspects.
    Garg G; Khandelwal A; Blagg BS
    Adv Cancer Res; 2016; 129():51-88. PubMed ID: 26916001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the hydrophobic region of Hsp90's ATP binding pocket with novel 1,3,5-triazines.
    Lee T; Seo YH
    Bioorg Med Chem Lett; 2013 Dec; 23(23):6427-31. PubMed ID: 24125885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric Hsp90 N domain SUMOylation recruits Aha1 and ATP-competitive inhibitors.
    Mollapour M; Bourboulia D; Beebe K; Woodford MR; Polier S; Hoang A; Chelluri R; Li Y; Guo A; Lee MJ; Fotooh-Abadi E; Khan S; Prince T; Miyajima N; Yoshida S; Tsutsumi S; Xu W; Panaretou B; Stetler-Stevenson WG; Bratslavsky G; Trepel JB; Prodromou C; Neckers L
    Mol Cell; 2014 Jan; 53(2):317-29. PubMed ID: 24462205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal modulators of heat shock protein of 90 kDa (HSP90): State of development and modes of action.
    Bickel D; Gohlke H
    Bioorg Med Chem; 2019 Nov; 27(21):115080. PubMed ID: 31519378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous Responses and Isoform Compensation the Dim Therapeutic Window of Hsp90 ATP-Binding Inhibitors in Cancer.
    Tang X; Chang C; Mosallaei D; Woodley DT; Schönthal AH; Chen M; Li W
    Mol Cell Biol; 2022 Feb; 42(2):e0045921. PubMed ID: 34871064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Posttranslational Modifications on the Anticancer Activity of Hsp90 Inhibitors.
    Woodford MR; Dunn D; Miller JB; Jamal S; Neckers L; Mollapour M
    Adv Cancer Res; 2016; 129():31-50. PubMed ID: 26916000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assays for identification of Hsp90 inhibitors and biochemical methods for discriminating their mechanism of action.
    Matts RL; Manjarrez JR
    Curr Top Med Chem; 2009; 9(15):1462-78. PubMed ID: 19860729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-molecule dual inhibitors targeting heat shock protein 90 for cancer targeted therapy.
    Xie X; Zhang N; Li X; Huang H; Peng C; Huang W; Foster LJ; He G; Han B
    Bioorg Chem; 2023 Oct; 139():106721. PubMed ID: 37467620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural iminosugar (+)-lentiginosine inhibits ATPase and chaperone activity of hsp90.
    Dal Piaz F; Vassallo A; Chini MG; Cordero FM; Cardona F; Pisano C; Bifulco G; De Tommasi N; Brandi A
    PLoS One; 2012; 7(8):e43316. PubMed ID: 22916240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsp90 molecular chaperone inhibitors: are we there yet?
    Neckers L; Workman P
    Clin Cancer Res; 2012 Jan; 18(1):64-76. PubMed ID: 22215907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined pharmacophore and structure-guided studies to identify diverse HSP90 inhibitors.
    Sanam R; Tajne S; Gundla R; Vadivelan S; Machiraju PK; Dayam R; Narasu L; Jagarlapudi S; Neamati N
    J Mol Graph Model; 2010 Feb; 28(6):472-7. PubMed ID: 20005756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual screening based identification of miltefosine and octenidine as inhibitors of heat shock protein 90.
    Li L; Yang M; Li C; Liu Y
    Naunyn Schmiedebergs Arch Pharmacol; 2021 Nov; 394(11):2223-2232. PubMed ID: 34406420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers.
    Jhaveri K; Taldone T; Modi S; Chiosis G
    Biochim Biophys Acta; 2012 Mar; 1823(3):742-55. PubMed ID: 22062686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penicisulfuranol A, a novel C-terminal inhibitor disrupting molecular chaperone function of Hsp90 independent of ATP binding domain.
    Dai J; Chen A; Zhu M; Qi X; Tang W; Liu M; Li D; Gu Q; Li J
    Biochem Pharmacol; 2019 May; 163():404-415. PubMed ID: 30857829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tubocapsenolide A targets C-terminal cysteine residues of HSP90 to exert the anti-tumor effect.
    Zhu D; Li S; Chen C; Wang S; Zhu J; Kong L; Luo J
    Pharmacol Res; 2021 Apr; 166():105523. PubMed ID: 33667688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.
    Marcu MG; Chadli A; Bouhouche I; Catelli M; Neckers LM
    J Biol Chem; 2000 Nov; 275(47):37181-6. PubMed ID: 10945979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.