These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 36513377)
21. CAME: identification of chromatin accessibility from nucleosome occupancy and methylome sequencing. Piao Y; Lee SK; Lee EJ; Robertson KD; Shi H; Ryu KH; Choi JH Bioinformatics; 2017 Apr; 33(8):1139-1146. PubMed ID: 28035030 [TBL] [Abstract][Full Text] [Related]
22. Chromatin accessibility illuminates single-cell regulatory dynamics of rice root tips. Feng D; Liang Z; Wang Y; Yao J; Yuan Z; Hu G; Qu R; Xie S; Li D; Yang L; Zhao X; Ma Y; Lohmann JU; Gu X BMC Biol; 2022 Dec; 20(1):274. PubMed ID: 36482454 [TBL] [Abstract][Full Text] [Related]
23. A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility. Xu W; Wen Y; Liang Y; Xu Q; Wang X; Jin W; Chen X Nat Protoc; 2021 Aug; 16(8):4084-4107. PubMed ID: 34282334 [TBL] [Abstract][Full Text] [Related]
25. Characterizing chromatin landscape from aggregate and single-cell genomic assays using flexible duration modeling. Gabitto MI; Rasmussen A; Wapinski O; Allaway K; Carriero N; Fishell GJ; Bonneau R Nat Commun; 2020 Feb; 11(1):747. PubMed ID: 32029740 [TBL] [Abstract][Full Text] [Related]
26. Application of ATAC-Seq for genome-wide analysis of the chromatin state at single myofiber resolution. Sahinyan K; Blackburn DM; Simon MM; Lazure F; Kwan T; Bourque G; Soleimani VD Elife; 2022 Feb; 11():. PubMed ID: 35188098 [TBL] [Abstract][Full Text] [Related]
27. Multiplex indexing approach for the detection of DNase I hypersensitive sites in single cells. Gao W; Ku WL; Pan L; Perrie J; Zhao T; Hu G; Wu Y; Zhu J; Ni B; Zhao K Nucleic Acids Res; 2021 Jun; 49(10):e56. PubMed ID: 33693880 [TBL] [Abstract][Full Text] [Related]
29. Chromatin accessibility landscape of stromal subpopulations reveals distinct metabolic and inflammatory features of porcine subcutaneous and visceral adipose tissue. Sun W; Zhang T; Hu S; Tang Q; Long X; Yang X; Gun S; Chen L PeerJ; 2022; 10():e13250. PubMed ID: 35646489 [TBL] [Abstract][Full Text] [Related]
30. Single-nucleus chromatin accessibility reveals intratumoral epigenetic heterogeneity in IDH1 mutant gliomas. Al-Ali R; Bauer K; Park JW; Al Abdulla R; Fermi V; von Deimling A; Herold-Mende C; Mallm JP; Herrmann C; Wick W; Turcan Ş Acta Neuropathol Commun; 2019 Dec; 7(1):201. PubMed ID: 31806013 [TBL] [Abstract][Full Text] [Related]
31. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Grosselin K; Durand A; Marsolier J; Poitou A; Marangoni E; Nemati F; Dahmani A; Lameiras S; Reyal F; Frenoy O; Pousse Y; Reichen M; Woolfe A; Brenan C; Griffiths AD; Vallot C; Gérard A Nat Genet; 2019 Jun; 51(6):1060-1066. PubMed ID: 31152164 [TBL] [Abstract][Full Text] [Related]
32. Mapping the regulatory landscape of auditory hair cells from single-cell multi-omics data. Wang S; Lee MP; Jones S; Liu J; Waldhaus J Genome Res; 2021 Oct; 31(10):1885-1899. PubMed ID: 33837132 [TBL] [Abstract][Full Text] [Related]
33. A comparative analysis of chromatin accessibility in cattle, pig, and mouse tissues. Halstead MM; Kern C; Saelao P; Wang Y; Chanthavixay G; Medrano JF; Van Eenennaam AL; Korf I; Tuggle CK; Ernst CW; Zhou H; Ross PJ BMC Genomics; 2020 Oct; 21(1):698. PubMed ID: 33028202 [TBL] [Abstract][Full Text] [Related]
34. Different expression patterns of intact forms of squamous cell carcinoma antigens between normal and malignant cervical squamous epithelial tissues: nondenaturing polyacrylamide gel electrophoretic analysis. Nawata S; Murakami A; Torii M; Nakagawa T; Sueoka K; Takeda O; Suminami Y; Nakamura K; Kato H; Sugino N Oncol Rep; 2006 Aug; 16(2):399-404. PubMed ID: 16820922 [TBL] [Abstract][Full Text] [Related]
35. Joint reconstruction of cis-regulatory interaction networks across multiple tissues using single-cell chromatin accessibility data. Dong K; Zhang S Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32578841 [TBL] [Abstract][Full Text] [Related]
36. Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data. Zuo C; Chen L Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33200787 [TBL] [Abstract][Full Text] [Related]
37. Genome-Wide Analysis of Chromatin Accessibility in Arabidopsis Infected with Pseudomonas syringae. Bordiya Y; Kang HG Methods Mol Biol; 2017; 1578():263-272. PubMed ID: 28220432 [TBL] [Abstract][Full Text] [Related]
38. Unbiased chromatin accessibility profiling by RED-seq uncovers unique features of nucleosome variants in vivo. Chen PB; Zhu LJ; Hainer SJ; McCannell KN; Fazzio TG BMC Genomics; 2014 Dec; 15(1):1104. PubMed ID: 25494698 [TBL] [Abstract][Full Text] [Related]
39. Protocol for scChaRM-seq: Simultaneous profiling of gene expression, DNA methylation, and chromatin accessibility in single cells. Yan R; Cheng X; Guo F STAR Protoc; 2021 Dec; 2(4):100972. PubMed ID: 34849489 [TBL] [Abstract][Full Text] [Related]
40. Regulatory Architecture of the LβT2 Gonadotrope Cell Underlying the Response to Gonadotropin-Releasing Hormone. Ruf-Zamojski F; Fribourg M; Ge Y; Nair V; Pincas H; Zaslavsky E; Nudelman G; Tuminello SJ; Watanabe H; Turgeon JL; Sealfon SC Front Endocrinol (Lausanne); 2018; 9():34. PubMed ID: 29487567 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]