BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 36513545)

  • 21. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
    Chae S; Cho DW
    Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoclick polysaccharide-based bioinks with an extended biofabrication window for 3D embedded bioprinting.
    Zhou K; Feng M; Mao H; Gu Z
    Biomater Sci; 2022 Aug; 10(16):4479-4491. PubMed ID: 35792832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiphoton crosslinking for biocompatible 3D printing of type I collagen.
    Bell A; Kofron M; Nistor V
    Biofabrication; 2015 Sep; 7(3):035007. PubMed ID: 26335389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanomaterials for bioprinting: functionalization of tissue-specific bioinks.
    Theus AS; Ning L; Jin L; Roeder RK; Zhang J; Serpooshan V
    Essays Biochem; 2021 Aug; 65(3):429-439. PubMed ID: 34223619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering.
    Daly AC; Freeman FE; Gonzalez-Fernandez T; Critchley SE; Nulty J; Kelly DJ
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28804984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decellularized Extracellular Matrix-Based Bioinks for Tendon Regeneration in Three-Dimensional Bioprinting.
    Al-Hakim Khalak F; García-Villén F; Ruiz-Alonso S; Pedraz JL; Saenz-Del-Burgo L
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
    Pati F; Cho DW
    Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 4D Biofabrication: Materials, Methods, and Applications.
    Ionov L
    Adv Healthc Mater; 2018 Sep; 7(17):e1800412. PubMed ID: 29978564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of Bioprinting with a Modified Desktop 3D Printer.
    Goldstein TA; Epstein CJ; Schwartz J; Krush A; Lagalante DJ; Mercadante KP; Zeltsman D; Smith LP; Grande DA
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1071-1076. PubMed ID: 27819188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D bioprinting complex models of cancer.
    Sharma R; Restan Perez M; da Silva VA; Thomsen J; Bhardwaj L; Andrade TAM; Alhussan A; Willerth SM
    Biomater Sci; 2023 May; 11(10):3414-3430. PubMed ID: 37000528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of surface patterning and topography on the cellular functions of tissue engineered scaffolds with special reference to 3D bioprinting.
    Adhikari J; Roy A; Chanda A; D A G; Thomas S; Ghosh M; Kim J; Saha P
    Biomater Sci; 2023 Feb; 11(4):1236-1269. PubMed ID: 36644788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for In Vitro Models.
    Lewns FK; Tsigkou O; Cox LR; Wildman RD; Grover LM; Poologasundarampillai G
    Adv Mater; 2023 Dec; 35(52):e2301670. PubMed ID: 37087739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting.
    Abaci A; Guvendiren M
    Adv Healthc Mater; 2020 Dec; 9(24):e2000734. PubMed ID: 32691980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues.
    You S; Xiang Y; Hwang HH; Berry DB; Kiratitanaporn W; Guan J; Yao E; Tang M; Zhong Z; Ma X; Wangpraseurt D; Sun Y; Lu TY; Chen S
    Sci Adv; 2023 Feb; 9(8):eade7923. PubMed ID: 36812321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D bioprinting in cardiac tissue engineering.
    Wang Z; Wang L; Li T; Liu S; Guo B; Huang W; Wu Y
    Theranostics; 2021; 11(16):7948-7969. PubMed ID: 34335973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.