BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36513554)

  • 1. Long non-coding RNAs at the crossroad of vascular smooth muscle cell phenotypic modulation in atherosclerosis and neointimal formation.
    Fasolo F; Paloschi V; Maegdefessel L
    Atherosclerosis; 2023 Jun; 374():34-43. PubMed ID: 36513554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-coding RNAs in cardiovascular cell biology and atherosclerosis.
    Fasolo F; Di Gregoli K; Maegdefessel L; Johnson JL
    Cardiovasc Res; 2019 Oct; 115(12):1732-1756. PubMed ID: 31389987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long non-coding RNAs: A crucial part of the vasculature puzzle.
    Garg A; Gupta SK; Thum T
    Vascul Pharmacol; 2019 Mar; 114():131-138. PubMed ID: 29481972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long non-coding RNAs: The growth controller of vascular smooth muscle cells in cardiovascular diseases.
    Xun M; Zhang J; Wu M; Chen Y
    Int J Biochem Cell Biol; 2023 Apr; 157():106392. PubMed ID: 36828237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic switching of vascular smooth muscle cells in the 'normal region' of aorta from atherosclerosis patients is regulated by miR-145.
    Zhang YN; Xie BD; Sun L; Chen W; Jiang SL; Liu W; Bian F; Tian H; Li RK
    J Cell Mol Med; 2016 Jun; 20(6):1049-61. PubMed ID: 26992033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular smooth muscle cell in atherosclerosis.
    Chistiakov DA; Orekhov AN; Bobryshev YV
    Acta Physiol (Oxf); 2015 May; 214(1):33-50. PubMed ID: 25677529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1.
    Zhang L; Cheng H; Yue Y; Li S; Zhang D; He R
    Cardiovasc Pathol; 2018; 33():6-15. PubMed ID: 29268138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis.
    Grootaert MOJ; Moulis M; Roth L; Martinet W; Vindis C; Bennett MR; De Meyer GRY
    Cardiovasc Res; 2018 Mar; 114(4):622-634. PubMed ID: 29360955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Transcript Discovery Expands the Repertoire of Pathologically-Associated, Long Non-Coding RNAs in Vascular Smooth Muscle Cells.
    Bennett M; Ulitsky I; Alloza I; Vandenbroeck K; Miscianinov V; Mahmoud AD; Ballantyne M; Rodor J; Baker AH
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders.
    Coll-Bonfill N; de la Cruz-Thea B; Pisano MV; Musri MM
    Pflugers Arch; 2016 Jun; 468(6):1071-87. PubMed ID: 27109570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LncRNA-modulated autophagy in plaque cells: a new paradigm of gene regulation in atherosclerosis?
    Ren K; Xu XD; Yu XH; Li MQ; Shi MW; Liu QX; Jiang T; Zheng XL; Yin K; Zhao GJ
    Aging (Albany NY); 2020 Nov; 12(21):22335-22349. PubMed ID: 33154191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype.
    von der Thüsen JH; Borensztajn KS; Moimas S; van Heiningen S; Teeling P; van Berkel TJ; Biessen EA
    Am J Pathol; 2011 Feb; 178(2):924-34. PubMed ID: 21281823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long non-coding RNAs in vascular biology and disease.
    Jaé N; Heumüller AW; Fouani Y; Dimmeler S
    Vascul Pharmacol; 2019 Mar; 114():13-22. PubMed ID: 30910127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection.
    Elmarasi M; Elmakaty I; Elsayed B; Elsayed A; Zein JA; Boudaka A; Eid AH
    J Cell Physiol; 2024 Apr; 239(4):e31200. PubMed ID: 38291732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of mechanotransduction, vascular wall cells, and blood cells in atheroma induction.
    Novikova OA; Laktionov PP; Karpenko AA
    Vascular; 2019 Feb; 27(1):98-109. PubMed ID: 30157718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncoding RNAs in atherosclerosis: regulation and therapeutic potential.
    Qi L; Xing J; Yuan Y; Lei M
    Mol Cell Biochem; 2024 May; 479(5):1279-1295. PubMed ID: 37418054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis.
    Kumar S; Williams D; Sur S; Wang JY; Jo H
    Vascul Pharmacol; 2019 Mar; 114():76-92. PubMed ID: 30300747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Long Non-coding Road to Atherosclerosis.
    Josefs T; Boon RA
    Curr Atheroscler Rep; 2020 Aug; 22(10):55. PubMed ID: 32772181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive Proliferation of a Subset of Differentiated, yet Plastic, Medial Vascular Smooth Muscle Cells Contributes to Neointimal Formation in Mouse Injury and Atherosclerosis Models.
    Chappell J; Harman JL; Narasimhan VM; Yu H; Foote K; Simons BD; Bennett MR; Jørgensen HF
    Circ Res; 2016 Dec; 119(12):1313-1323. PubMed ID: 27682618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. microRNA let-7g suppresses PDGF-induced conversion of vascular smooth muscle cell into the synthetic phenotype.
    Wang TM; Chen KC; Hsu PY; Lin HF; Wang YS; Chen CY; Liao YC; Juo SH
    J Cell Mol Med; 2017 Dec; 21(12):3592-3601. PubMed ID: 28699690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.