BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36513560)

  • 1. Different Performances of Machine Learning Models to Classify Dysphonic and Non-Dysphonic Voices.
    Leite DRA; de Moraes RM; Lopes LW
    J Voice; 2022 Dec; ():. PubMed ID: 36513560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The accuracy of an Online Sequential Extreme Learning Machine in detecting voice pathology using the Malaysian Voice Pathology Database.
    Za'im NAN; Al-Dhief FT; Azman M; Alsemawi MRM; Abdul Latiff NMA; Mat Baki M
    J Otolaryngol Head Neck Surg; 2023 Sep; 52(1):62. PubMed ID: 37730624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning in automatic detection of dysphonia: Comparing acoustic features and developing a generalizable framework.
    Chen Z; Zhu P; Qiu W; Guo J; Li Y
    Int J Lang Commun Disord; 2023 Mar; 58(2):279-294. PubMed ID: 36117378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suitability of acoustic perturbation measures in analysing periodic and nearly periodic voice signals.
    Ma EP; Yiu EM
    Folia Phoniatr Logop; 2005; 57(1):38-47. PubMed ID: 15655340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic and Perceptual Classification of Within-sample Normal, Intermittently Dysphonic, and Consistently Dysphonic Voice Types.
    Gaskill CS; Awan JA; Watts CR; Awan SN
    J Voice; 2017 Mar; 31(2):218-228. PubMed ID: 27241579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of the Effect of Vocal Exercises by Fuzzy Triangular Naive Bayes, a Machine Learning Classifier: A Preliminary Analysis.
    Santana ÉR; Lopes L; de Moraes RM
    J Voice; 2022 Nov; ():. PubMed ID: 36376192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of Acoustic Voice Quality Index and Its Isolated Acoustic Measures to Discriminate the Severity of Voice Disorders.
    Englert M; Lopes L; Vieira V; Behlau M
    J Voice; 2022 Jul; 36(4):582.e1-582.e10. PubMed ID: 32873433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy Analysis of the Multiparametric Acoustic Voice Indices, the VWI, AVQI, ABI, and DSI Measures, in Differentiating between Normal and Dysphonic Voices.
    Uloza V; Pribuišis K; Ulozaite-Staniene N; Petrauskas T; Damaševičius R; Maskeliūnas R
    J Clin Med; 2023 Dec; 13(1):. PubMed ID: 38202106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of cepstral analysis for differentiating dysphonic from normal voices in children.
    Esen Aydinli F; Özcebe E; İncebay Ö
    Int J Pediatr Otorhinolaryngol; 2019 Jan; 116():107-113. PubMed ID: 30554679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of Dysphonia Severity Index and Acoustic Voice Quality Index measures in differentiating normal and dysphonic voices.
    Uloza V; Latoszek BBV; Ulozaite-Staniene N; Petrauskas T; Maryn Y
    Eur Arch Otorhinolaryngol; 2018 Apr; 275(4):949-958. PubMed ID: 29442165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Auditory-perceptive, acoustic and vocal self-perception analyses in children].
    Oliveira RC; Teixeira LC; Gama AC; Medeiros AM
    J Soc Bras Fonoaudiol; 2011; 23(2):158-63. PubMed ID: 21829932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of spectral/cepstral analyses for differentiating normal from hypofunctional voices in sustained vowel and continuous speech contexts.
    Watts CR; Awan SN
    J Speech Lang Hear Res; 2011 Dec; 54(6):1525-37. PubMed ID: 22180020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the Acoustic Breathiness Index in Speakers of Finnish Language.
    Kankare E; Laukkanen AM
    J Clin Med; 2023 Dec; 12(24):. PubMed ID: 38137676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the cepstral acoustic characteristics of voice in healthy children.
    Demirci AN; Köse A; Aydinli FE; İncebay Ö; Yilmaz T
    Int J Pediatr Otorhinolaryngol; 2021 Sep; 148():110815. PubMed ID: 34217000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying and Improving the Performance of Speech Recognition Systems on Dysphonic Speech.
    Hidalgo Lopez JC; Sandeep S; Wright M; Wandell GM; Law AB
    Otolaryngol Head Neck Surg; 2023 May; 168(5):1130-1138. PubMed ID: 36939576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epileptic Patient Activity Recognition System Using Extreme Learning Machine Method.
    Ayman U; Zia MS; Okon OD; Rehman NU; Meraj T; Ragab AE; Rauf HT
    Biomedicines; 2023 Mar; 11(3):. PubMed ID: 36979795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiparameter Voice Assessment in Dysphonics: Correlation Between Objective and Perceptual Parameters.
    Narasimhan SV; Rashmi R
    J Voice; 2022 May; 36(3):335-343. PubMed ID: 32651100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of cepstral analyses for differentiating normal from dysphonic voices: a comparative study of connected speech versus sustained vowel in European Portuguese female speakers.
    Brinca LF; Batista AP; Tavares AI; Gonçalves IC; Moreno ML
    J Voice; 2014 May; 28(3):282-6. PubMed ID: 24491499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of machine learning methods in diagnosing Parkinson's disease based on dysphonia measures.
    Lahmiri S; Dawson DA; Shmuel A
    Biomed Eng Lett; 2018 Feb; 8(1):29-39. PubMed ID: 30603188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.