These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36513560)

  • 21. Acoustic Measures of Dysphonia in Amyotrophic Lateral Sclerosis.
    Maffei MF; Green JR; Murton O; Yunusova Y; Rowe HP; Wehbe F; Diana K; Nicholson K; Berry JD; Connaghan KP
    J Speech Lang Hear Res; 2023 Mar; 66(3):872-887. PubMed ID: 36802910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perception and Acoustic Studies of Vowel Intelligibility in Dysphonic Speech.
    Ishikawa K; Nudelman C; Park S; Ketring C
    J Voice; 2021 Jul; 35(4):659.e11-659.e24. PubMed ID: 31952898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Fundamental Frequency, Vocal Intensity, Sample Duration, and Vowel Context in Cepstral and Spectral Measures of Dysphonic Voices.
    Sampaio M; Vaz Masson ML; de Paula Soares MF; Bohlender JE; Brockmann-Bauser M
    J Speech Lang Hear Res; 2020 May; 63(5):1326-1339. PubMed ID: 32348195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Cepstral Analysis of Normal and Pathologic Voice Qualities in Iranian Adults: A Comparative Study.
    Hasanvand A; Salehi A; Ebrahimipour M
    J Voice; 2017 Jul; 31(4):508.e17-508.e23. PubMed ID: 27993499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectrographic Voice Analysis Protocol (SAP): Convergent, Concurrent, and Accuracy Validity.
    da Silva ACF; de Araújo Lima-Filho LM; Almeida AA; Coêlho HFC; Ribeiro VV; Lopes LW
    J Voice; 2023 Oct; ():. PubMed ID: 37863674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of Acoustic Measures for the Discrimination Among Healthy, Rough, Breathy, and Strained Voices Using the Feedforward Neural Network.
    de Abreu SR; Sousa ESDS; de Moraes RM; Lopes LW
    J Voice; 2022 Aug; ():. PubMed ID: 36028370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sentiment classification for employees reviews using regression vector- stochastic gradient descent classifier (RV-SGDC).
    Gaye B; Zhang D; Wulamu A
    PeerJ Comput Sci; 2021; 7():e712. PubMed ID: 34712795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relating Cepstral Peak Prominence to Cyclical Parameters of Vocal Fold Vibration from High-Speed Videoendoscopy Using Machine Learning: A Pilot Study.
    Popolo PS; Johnson AM
    J Voice; 2021 Sep; 35(5):703-716. PubMed ID: 32173147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification of dysphonic voice: acoustic and auditory-perceptual measures.
    Eadie TL; Doyle PC
    J Voice; 2005 Mar; 19(1):1-14. PubMed ID: 15766846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vocal stability in functional dysphonic versus healthy voices at different times of voice loading.
    Jilek C; Marienhagen J; Hacki T
    J Voice; 2004 Dec; 18(4):443-53. PubMed ID: 15567046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral- and cepstral-based acoustic features of dysphonic, strained voice quality.
    Lowell SY; Kelley RT; Awan SN; Colton RH; Chan NH
    Ann Otol Rhinol Laryngol; 2012 Aug; 121(8):539-48. PubMed ID: 22953661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Voiced Oral High-frequency Oscillation Technique's Immediate Effect on Individuals With Dysphonic and Normal Voices.
    Saters TL; Ribeiro VV; Siqueira LTD; Marotti BD; Brasolotto AG; Silverio KCA
    J Voice; 2018 Jul; 32(4):449-458. PubMed ID: 28844805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perception of dysphonic voice quality by naive listeners.
    Wolfe VI; Martin DP; Palmer CI
    J Speech Lang Hear Res; 2000 Jun; 43(3):697-705. PubMed ID: 10877439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classification of Dysphonic Voices in Parkinson's Disease with Semi-Supervised Competitive Learning Algorithm.
    Bao G; Lin M; Sang X; Hou Y; Liu Y; Wu Y
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of Cepstral Acoustic Analysis for Normal and Pathological Voice in the Japanese Language.
    Mizuta M; Abe C; Taguchi E; Takeue T; Tamaki H; Haji T
    J Voice; 2022 Nov; 36(6):770-776. PubMed ID: 32951954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nebulized Saline Solution: A Multidimensional Voice Analysis.
    Souza BO; Santos MAR; Plec EMRL; Diniz ML; Gama ACC
    J Voice; 2023 Jul; 37(4):634.e1-634.e18. PubMed ID: 33849762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Acoustic-Signal-Based Preventive Program for University Lecturers' Vocal Health.
    Paniagua MS; Pérez CJ; Calle-Alonso F; Salazar C
    J Voice; 2020 Jan; 34(1):88-99. PubMed ID: 30072204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voice Disorder Identification by using Hilbert-Huang Transform (HHT) and K Nearest Neighbor (KNN).
    Chen L; Wang C; Chen J; Xiang Z; Hu X
    J Voice; 2021 Nov; 35(6):932.e1-932.e11. PubMed ID: 32402664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship Between Aerodynamic Measurement of Maximum Phonation Time With Acoustic Analysis and the Effects of Sex and Dysphonia Type.
    Saeedi S; Khoddami SM; Dabirmoghaddam P; Jalaie S; Aghajanzadeh M
    J Voice; 2023 Mar; ():. PubMed ID: 36990864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Formant Bandwidth as a Measure of Vowel Intelligibility in Dysphonic Speech.
    Ishikawa K; Webster J
    J Voice; 2023 Mar; 37(2):173-177. PubMed ID: 33143999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.