These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36513560)

  • 41. Severity of voice disorders: integration of perceptual and acoustic data in dysphonic patients.
    Lopes LW; Cavalcante DP; Costa PO
    Codas; 2014; 26(5):382-8. PubMed ID: 25388071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immediate Effects of the Semi-Occluded Ventilation Mask on Subjects Diagnosed With Functional Dysphonia and Subjects With Normal Voices.
    Frisancho K; Salfate L; Lizana K; Guzman M; Leiva F; Quezada C
    J Voice; 2020 May; 34(3):398-409. PubMed ID: 30424914
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of Cepstral Analysis Based on Voiced-Segment Extraction and Voice Tasks for Discriminating Dysphonic and Normophonic Korean Speakers.
    Kim GH; Bae IH; Park HJ; Lee YW
    J Voice; 2021 Mar; 35(2):328.e11-328.e22. PubMed ID: 31640898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative analysis of professionally trained versus untrained voices.
    Siupsinskiene N
    Medicina (Kaunas); 2003; 39(1):36-46. PubMed ID: 12576764
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correlation Between Subjective and Objective Parameters of Voice in Elderly Male Speakers.
    Soumya M; Narasimhan SV
    J Voice; 2022 Nov; 36(6):823-831. PubMed ID: 33092948
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Receiver operating characteristic analysis of acoustic and electroglottographic parameters with different sustained vowels.
    Yılmaz G; Cangi ME; Yelken K
    Logoped Phoniatr Vocol; 2022 Dec; 47(4):284-291. PubMed ID: 34519593
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predictive value and discriminant capacity of cepstral- and spectral-based measures during continuous speech.
    Lowell SY; Colton RH; Kelley RT; Mizia SA
    J Voice; 2013 Jul; 27(4):393-400. PubMed ID: 23684735
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Performance of Different Acoustic Measures to Discriminate Individuals With and Without Voice Disorders.
    Lopes L; Vieira V; Behlau M
    J Voice; 2022 Jul; 36(4):487-498. PubMed ID: 32798120
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiparametric evaluation of dysphonic severity.
    Ma EP; Yiu EM
    J Voice; 2006 Sep; 20(3):380-90. PubMed ID: 16185841
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The reliability and sensitivity to change of acoustic measures of voice quality.
    Carding PN; Steen IN; Webb A; MacKenzie K; Deary IJ; Wilson JA
    Clin Otolaryngol Allied Sci; 2004 Oct; 29(5):538-44. PubMed ID: 15373870
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Does the Combination of Glottal and Supraglottic Acoustic Measures Improve Discrimination Between Women With and Without Voice Disorders?
    Lopes LW; França FP; Evangelista DDS; Alves JDN; Vieira VJD; de Lima-Silva MFB; Pernambuco LA
    J Voice; 2022 Jul; 36(4):583.e17-583.e29. PubMed ID: 32917459
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of the Voice Sample Length in Perceptual and Acoustic Voice Quality Analysis.
    Englert M; Lima L; Latoszek BBV; Behlau M
    J Voice; 2022 Jul; 36(4):582.e23-582.e32. PubMed ID: 32792161
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reliability of Acoustic Measures in Dysphonic Patients With Glottic Insufficiency and Healthy Population: A COVID-19 Perspective.
    Lee SJ; Kang MS; Park YM; Lim JY
    J Voice; 2022 Jul; ():. PubMed ID: 35835646
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Establishment of a normative cepstral pediatric acoustic database.
    Infusino SA; Diercks GR; Rogers DJ; Garcia J; Ojha S; Maurer R; Bunting G; Hartnick CJ
    JAMA Otolaryngol Head Neck Surg; 2015 Apr; 141(4):358-63. PubMed ID: 25612091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of Recurrence Quantification Measures in Discriminating Subjects With and Without Voice Disorders.
    Lopes LW; Vieira VJD; Costa SLDNC; Correia SÉN; Behlau M
    J Voice; 2020 Mar; 34(2):208-220. PubMed ID: 30297102
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of fundamental frequency and perturbation measurements among three analysis systems.
    Karnell MP; Hall KD; Landahl KL
    J Voice; 1995 Dec; 9(4):383-93. PubMed ID: 8574304
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison Between Custom Smartphone Acoustic Processing Algorithms and Praat in Healthy and Disordered Voices.
    Llico AF; Shanley SN; Friedman AD; Bamford LM; Roberts RM; McKenna VS
    J Voice; 2023 Sep; ():. PubMed ID: 37690854
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pitch strength of normal and dysphonic voices.
    Shrivastav R; Eddins DA; Anand S
    J Acoust Soc Am; 2012 Mar; 131(3):2261-9. PubMed ID: 22423721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Classification of Voice Disorders Using a One-Dimensional Convolutional Neural Network.
    Fujimura S; Kojima T; Okanoue Y; Shoji K; Inoue M; Omori K; Hori R
    J Voice; 2022 Jan; 36(1):15-20. PubMed ID: 32173149
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cepstral analysis of normal and pathological voice in Spanish adults. Smoothed cepstral peak prominence in sustained vowels versus connected speech.
    Delgado-Hernández J; León-Gómez NM; Izquierdo-Arteaga LM; Llanos-Fumero Y
    Acta Otorrinolaringol Esp (Engl Ed); 2018; 69(3):134-140. PubMed ID: 28867553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.