These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 36513785)
1. Heat and mass transfer for MHD peristaltic flow in a micropolar nanofluid: mathematical model with thermophysical features. Abd-Alla AM; Abo-Dahab SM; Thabet EN; Abdelhafez MA Sci Rep; 2022 Dec; 12(1):21540. PubMed ID: 36513785 [TBL] [Abstract][Full Text] [Related]
2. Numerical solution for MHD peristaltic transport in an inclined nanofluid symmetric channel with porous medium. Abd-Alla AM; Thabet EN; Bayones FS Sci Rep; 2022 Mar; 12(1):3348. PubMed ID: 35232981 [TBL] [Abstract][Full Text] [Related]
3. A computation analysis with heat and mass transfer for micropolar nanofluid in ciliated microchannel: With application in the ductus efferentes. Imran A; Alzubadi H; Ali MR Heliyon; 2024 Oct; 10(19):e39018. PubMed ID: 39430494 [TBL] [Abstract][Full Text] [Related]
4. Mathematical analysis of magnetohydrodynamic (MHD) flow of micropolar nanofluid under buoyancy effects past a vertical shrinking surface: dual solutions. Lund LA; Omar Z; Khan I Heliyon; 2019 Sep; 5(9):e02432. PubMed ID: 31687548 [TBL] [Abstract][Full Text] [Related]
5. Analysis of Peristaltic Motion of a Nanofluid with Wall Shear Stress, Microrotation, and Thermal Radiation Effects. Dhanapal C; Kamalakkannan J; Prakash J; Kothandapani M Appl Bionics Biomech; 2016; 2016():4123741. PubMed ID: 27688703 [TBL] [Abstract][Full Text] [Related]
6. Mathematical analysis of nonlinear thermal radiation and nanoparticle aggregation on unsteady MHD flow of micropolar nanofluid over shrinking sheet. Guedri K; Mahmood Z; Fadhl BM; Makhdoum BM; Eldin SM; Khan U Heliyon; 2023 Mar; 9(3):e14248. PubMed ID: 36925526 [TBL] [Abstract][Full Text] [Related]
7. NUMERICAL study of MAGNETO convective Buongiorno nanofluid flow in a rectangular enclosure under oblique magnetic field with heat generation/absorption and complex wall conditions. Vinodhini N; Prasad VR Heliyon; 2023 Jul; 9(7):e17669. PubMed ID: 37483737 [TBL] [Abstract][Full Text] [Related]
8. Double-diffusive peristaltic MHD Sisko nanofluid flow through a porous medium in presence of non-linear thermal radiation, heat generation/absorption, and Joule heating. Abo-Dahab SM; Mohamed RA; Abd-Alla AM; Soliman MS Sci Rep; 2023 Jan; 13(1):1432. PubMed ID: 36697466 [TBL] [Abstract][Full Text] [Related]
9. A numerical treatment of MHD radiative flow of Micropolar nanofluid with homogeneous-heterogeneous reactions past a nonlinear stretched surface. Lu D; Ramzan M; Ahmad S; Chung JD; Farooq U Sci Rep; 2018 Aug; 8(1):12431. PubMed ID: 30127369 [TBL] [Abstract][Full Text] [Related]
10. Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm. Dubey A; Vasu B; Anwar Bég O; Gorla RSR; Kadir A Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):345-371. PubMed ID: 32098508 [TBL] [Abstract][Full Text] [Related]
11. Magnetohydrodynamic double-diffusive peristaltic flow of radiating fourth-grade nanofluid through a porous medium with viscous dissipation and heat generation/absorption. Mohamed RA; Abo-Dahab SM; Abd-Alla AM; Soliman MS Sci Rep; 2023 Aug; 13(1):13096. PubMed ID: 37567889 [TBL] [Abstract][Full Text] [Related]
12. Entropy analysis on EMHD 3D micropolar tri-hybrid nanofluid flow of solar radiative slendering sheet by a machine learning algorithm. Jakeer S; Basha HT; Reddy SRR; Abbas M; Alqahtani MS; Loganathan K; Anand AV Sci Rep; 2023 Nov; 13(1):19168. PubMed ID: 37932305 [TBL] [Abstract][Full Text] [Related]
13. MHD boundary layer radiative, heat generating and chemical reacting flow past a wedge moving in a nanofluid. Khan MS; Karim I; Islam MS; Wahiduzzaman M Nano Converg; 2014; 1(1):20. PubMed ID: 28191400 [TBL] [Abstract][Full Text] [Related]
14. Numerical analysis of magnetohydrodynamics Casson nanofluid flow with activation energy, Hall current and thermal radiation. Suresh Kumar Y; Hussain S; Raghunath K; Ali F; Guedri K; Eldin SM; Khan MI Sci Rep; 2023 Mar; 13(1):4021. PubMed ID: 36899067 [TBL] [Abstract][Full Text] [Related]
15. Unsteady micropolar nanofluid flow past a variable riga stretchable surface with variable thermal conductivity. Abbas N; Ali M; Shatanawi W; Hasan F Heliyon; 2024 Jan; 10(1):e23590. PubMed ID: 38187320 [TBL] [Abstract][Full Text] [Related]
16. Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport. Nayak MK; Abdul Hakeem AK; Ganga B; Ijaz Khan M; Waqas M; Makinde OD Comput Methods Programs Biomed; 2020 Apr; 186():105131. PubMed ID: 31733519 [TBL] [Abstract][Full Text] [Related]
17. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition. Uddin MJ; Khan WA; Ismail AI PLoS One; 2012; 7(11):e49499. PubMed ID: 23166688 [TBL] [Abstract][Full Text] [Related]
18. Chemically reactive MHD micropolar nanofluid flow with velocity slips and variable heat source/sink. Dawar A; Shah Z; Kumam P; Alrabaiah H; Khan W; Islam S; Shaheen N Sci Rep; 2020 Dec; 10(1):20926. PubMed ID: 33262395 [TBL] [Abstract][Full Text] [Related]
19. Numerical analysis of water based CNTs flow of micropolar fluid through rotating frame. Nadeem S; Abbas N; Elmasry Y; Malik MY Comput Methods Programs Biomed; 2020 Apr; 186():105194. PubMed ID: 31751872 [TBL] [Abstract][Full Text] [Related]
20. Entropy generation optimization of cilia regulated MHD ternary hybrid Jeffery nanofluid with Arrhenius activation energy and induced magnetic field. Mishra NK; Sharma BK; Sharma P; Muhammad T; Pérez LM Sci Rep; 2023 Sep; 13(1):14483. PubMed ID: 37660186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]