These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36513850)

  • 21. Distractor suppression leads to reduced flanker interference.
    Ivanov Y; Theeuwes J
    Atten Percept Psychophys; 2021 Feb; 83(2):624-636. PubMed ID: 33269439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Object-based suppression in target search but not in distractor inhibition.
    Jeong J; Cho YS
    Atten Percept Psychophys; 2024 Jun; ():. PubMed ID: 38839715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture.
    Failing M; Theeuwes J
    Psychon Bull Rev; 2020 Feb; 27(1):86-95. PubMed ID: 31848910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical learning of distractor shape modulates attentional capture.
    Kim H; Ogden A; Anderson BA
    Vision Res; 2023 Jan; 202():108155. PubMed ID: 36417810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. No evidence for spatial suppression due to across-trial distractor learning in visual search.
    Li AS; Bogaerts L; Theeuwes J
    Atten Percept Psychophys; 2023 May; 85(4):1088-1105. PubMed ID: 36823261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning to suppress likely distractor locations in visual search is driven by the local distractor frequency.
    Allenmark F; Zhang B; Shi Z; Müller HJ
    J Exp Psychol Hum Percept Perform; 2022 Nov; 48(11):1250-1278. PubMed ID: 36107665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial enhancement due to statistical learning tracks the estimated spatial probability.
    Zhang Y; Yang Y; Wang B; Theeuwes J
    Atten Percept Psychophys; 2022 May; 84(4):1077-1086. PubMed ID: 35426029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term (statistically learnt) and short-term (inter-trial) distractor-location effects arise at different pre- and post-selective processing stages.
    Qiu N; Zhang B; Allenmark F; Nasemann J; Tsai SY; Müller HJ; Shi Z
    Psychophysiology; 2023 Oct; 60(10):e14351. PubMed ID: 37277926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How to inhibit a distractor location? Statistical learning versus active, top-down suppression.
    Wang B; Theeuwes J
    Atten Percept Psychophys; 2018 May; 80(4):860-870. PubMed ID: 29476331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Post-capture processes contribute to statistical learning of distractor locations in visual search.
    Sauter M; Hanning NM; Liesefeld HR; Müller HJ
    Cortex; 2021 Feb; 135():108-126. PubMed ID: 33360756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systemic effects of selection history on learned ignoring.
    Kim A; Anderson B
    Psychon Bull Rev; 2022 Aug; 29(4):1347-1354. PubMed ID: 35112310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proactive distractor suppression elicited by statistical regularities in visual search.
    Huang C; Vilotijević A; Theeuwes J; Donk M
    Psychon Bull Rev; 2021 Jun; 28(3):918-927. PubMed ID: 33620698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feature-based statistical regularities of distractors modulate attentional capture.
    Stilwell BT; Bahle B; Vecera SP
    J Exp Psychol Hum Percept Perform; 2019 Mar; 45(3):419-433. PubMed ID: 30802131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning to suppress a distractor is not affected by working memory load.
    Gao Y; Theeuwes J
    Psychon Bull Rev; 2020 Feb; 27(1):96-104. PubMed ID: 31797259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct Mechanisms for Distractor Suppression and Target Facilitation.
    Noonan MP; Adamian N; Pike A; Printzlau F; Crittenden BM; Stokes MG
    J Neurosci; 2016 Feb; 36(6):1797-807. PubMed ID: 26865606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Independent effects of statistical learning and top-down attention.
    Gao Y; Theeuwes J
    Atten Percept Psychophys; 2020 Nov; 82(8):3895-3906. PubMed ID: 32909086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strategic Distractor Suppression Improves Selective Control in Human Vision.
    van Zoest W; Huber-Huber C; Weaver MD; Hickey C
    J Neurosci; 2021 Aug; 41(33):7120-7135. PubMed ID: 34244360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learned spatial suppression is not always proactive.
    Chang S; Dube B; Golomb JD; Leber AB
    J Exp Psychol Hum Percept Perform; 2023 Jul; 49(7):1031-1041. PubMed ID: 37199949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proactive enhancement and suppression elicited by statistical regularities in visual search.
    Huang C; Donk M; Theeuwes J
    J Exp Psychol Hum Percept Perform; 2022 May; 48(5):443-457. PubMed ID: 35324244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical learning in visual search reflects distractor rarity, not only attentional suppression.
    Kerzel D; Balbiani C; Rosa S; Huynh Cong S
    Psychon Bull Rev; 2022 Oct; 29(5):1890-1897. PubMed ID: 35445289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.