These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36514334)

  • 21. Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem.
    Ban T; Ohue M; Akiyama Y
    Comput Biol Chem; 2018 Apr; 73():139-146. PubMed ID: 29482137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ProBiS-Dock: A Hybrid Multitemplate Homology Flexible Docking Algorithm Enabled by Protein Binding Site Comparison.
    Konc J; Lešnik S; Škrlj B; Sova M; Proj M; Knez D; Gobec S; Janežič D
    J Chem Inf Model; 2022 Mar; 62(6):1573-1584. PubMed ID: 35289616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A cross docking pipeline for improving pose prediction and virtual screening performance.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2018 Jan; 32(1):163-173. PubMed ID: 28836076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SPOT-Ligand: Fast and effective structure-based virtual screening by binding homology search according to ligand and receptor similarity.
    Yang Y; Zhan J; Zhou Y
    J Comput Chem; 2016 Jul; 37(18):1734-9. PubMed ID: 27074979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.
    Kantardjiev AA
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W415-22. PubMed ID: 22669908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges.
    Huang SY
    Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DiffBindFR: an SE(3) equivariant network for flexible protein-ligand docking.
    Zhu J; Gu Z; Pei J; Lai L
    Chem Sci; 2024 May; 15(21):7926-7942. PubMed ID: 38817560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the
    Shamshad H; Hafiz A; Althagafi II; Saeed M; Mirza AZ
    Curr Comput Aided Drug Des; 2020; 16(5):583-598. PubMed ID: 31453790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm.
    Liu Y; Zhao L; Li W; Zhao D; Song M; Yang Y
    J Comput Chem; 2013 Jan; 34(1):67-75. PubMed ID: 22961860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GalaxySite: ligand-binding-site prediction by using molecular docking.
    Heo L; Shin WH; Lee MS; Seok C
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W210-4. PubMed ID: 24753427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Flexible Protein-Peptide Docking Using CABS-Dock.
    Ciemny MP; Kurcinski M; Kozak KJ; Kolinski A; Kmiecik S
    Methods Mol Biol; 2017; 1561():69-94. PubMed ID: 28236234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stalis: A Computational Method for Template-Based Ab Initio Ligand Design.
    Lee HS; Im W
    J Comput Chem; 2019 Jun; 40(17):1622-1632. PubMed ID: 30829435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search.
    Jain AN
    J Comput Aided Mol Des; 2007 May; 21(5):281-306. PubMed ID: 17387436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach.
    Lam PC; Abagyan R; Totrov M
    J Comput Aided Mol Des; 2018 Jan; 32(1):187-198. PubMed ID: 28887659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CABS-dock standalone: a toolbox for flexible protein-peptide docking.
    Kurcinski M; Pawel Ciemny M; Oleniecki T; Kuriata A; Badaczewska-Dawid AE; Kolinski A; Kmiecik S
    Bioinformatics; 2019 Oct; 35(20):4170-4172. PubMed ID: 30865258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BCL::MolAlign: Three-Dimensional Small Molecule Alignment for Pharmacophore Mapping.
    Brown BP; Mendenhall J; Meiler J
    J Chem Inf Model; 2019 Feb; 59(2):689-701. PubMed ID: 30707580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.