These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36514339)

  • 1. Accurate protein stability predictions from homology models.
    Valanciute A; Nygaard L; Zschach H; Maglegaard Jepsen M; Lindorff-Larsen K; Stein A
    Comput Struct Biotechnol J; 2023; 21():66-73. PubMed ID: 36514339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RosettaDDGPrediction for high-throughput mutational scans: From stability to binding.
    Sora V; Laspiur AO; Degn K; Arnaudi M; Utichi M; Beltrame L; De Menezes D; Orlandi M; Stoltze UK; Rigina O; Sackett PW; Wadt K; Schmiegelow K; Tiberti M; Papaleo E
    Protein Sci; 2023 Jan; 32(1):e4527. PubMed ID: 36461907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Best templates outperform homology models in predicting the impact of mutations on protein stability.
    Pak MA; Ivankov DN
    Bioinformatics; 2022 Sep; 38(18):4312-4320. PubMed ID: 35894930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target-template relationships in protein structure prediction and their effect on the accuracy of thermostability calculations.
    Lihan M; Lupyan D; Oehme D
    Protein Sci; 2023 Feb; 32(2):e4557. PubMed ID: 36573828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large scale analysis of protein stability in OMIM disease related human protein variants.
    Martelli PL; Fariselli P; Savojardo C; Babbi G; Aggazio F; Casadio R
    BMC Genomics; 2016 Jun; 17 Suppl 2(Suppl 2):397. PubMed ID: 27356511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPCR homology model template selection benchmarking: Global versus local similarity measures.
    Castleman PN; Sears CK; Cole JA; Baker DL; Parrill AL
    J Mol Graph Model; 2019 Jan; 86():235-246. PubMed ID: 30390544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks.
    Li B; Yang YT; Capra JA; Gerstein MB
    PLoS Comput Biol; 2020 Nov; 16(11):e1008291. PubMed ID: 33253214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the structure of opioid receptors with homology modeling based on single and multiple templates and subsequent docking: a comparative study.
    Bera I; Laskar A; Ghoshal N
    J Mol Model; 2011 May; 17(5):1207-21. PubMed ID: 20661609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology modeling and phylogenetic relationships of catalases of an opportunistic pathogen Rhizopus oryzae.
    Linka B; Szakonyi G; Petkovits T; Nagy LG; Papp T; Vágvölgyi C; Benyhe S; Ötvös F
    Life Sci; 2012 Aug; 91(3-4):115-26. PubMed ID: 22749862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physically realistic homology models built with ROSETTA can be more accurate than their templates.
    Misura KM; Chivian D; Rohl CA; Kim DE; Baker D
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5361-6. PubMed ID: 16567638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate stabilities of laccase mutants predicted with a modified FoldX protocol.
    Christensen NJ; Kepp KP
    J Chem Inf Model; 2012 Nov; 52(11):3028-42. PubMed ID: 23102044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting changes in protein stability caused by mutation using sequence-and structure-based methods in a CAGI5 blind challenge.
    Strokach A; Corbi-Verge C; Kim PM
    Hum Mutat; 2019 Sep; 40(9):1414-1423. PubMed ID: 31243847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: Binding mode prediction and docking enrichment.
    Loo JSE; Emtage AL; Ng KW; Yong ASJ; Doughty SW
    J Mol Graph Model; 2018 Mar; 80():38-47. PubMed ID: 29306746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced-Fit Docking Enables Accurate Free Energy Perturbation Calculations in Homology Models.
    Xu T; Zhu K; Beautrait A; Vendome J; Borrelli KW; Abel R; Friesner RA; Miller EB
    J Chem Theory Comput; 2022 Sep; 18(9):5710-5724. PubMed ID: 35972903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-state prediction of single point mutations on protein stability changes.
    Capriotti E; Fariselli P; Rossi I; Casadio R
    BMC Bioinformatics; 2008 Mar; 9 Suppl 2(Suppl 2):S6. PubMed ID: 18387208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling structurally variable regions in homologous proteins with rosetta.
    Rohl CA; Strauss CE; Chivian D; Baker D
    Proteins; 2004 May; 55(3):656-77. PubMed ID: 15103629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A natural upper bound to the accuracy of predicting protein stability changes upon mutations.
    Montanucci L; Martelli PL; Ben-Tal N; Fariselli P
    Bioinformatics; 2019 May; 35(9):1513-1517. PubMed ID: 30329016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic evaluation of computational tools to predict the effects of mutations on protein stability in the absence of experimental structures.
    Pan Q; Nguyen TB; Ascher DB; Pires DEV
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STRUM: structure-based prediction of protein stability changes upon single-point mutation.
    Quan L; Lv Q; Zhang Y
    Bioinformatics; 2016 Oct; 32(19):2936-46. PubMed ID: 27318206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.