These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36514842)

  • 41. Differences in signal contrast and camouflage among different colour variations of a stomatopod crustacean, Neogonodactylus oerstedii.
    Franklin AM; Marshall J; Feinstein AD; Bok MJ; Byrd AD; Lewis SM
    Sci Rep; 2020 Jan; 10(1):1236. PubMed ID: 31988305
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of ultraviolet reflectance differs between conspicuous aposematic signals in neotropical butterflies and poison frogs.
    Yeager J; Barnett JB
    Ecol Evol; 2021 Oct; 11(20):13633-13640. PubMed ID: 34707805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pattern variation is linked to anti-predator coloration in butterfly larvae.
    McLellan CF; Cuthill IC; Montgomery SH
    Proc Biol Sci; 2023 Jun; 290(2001):20230811. PubMed ID: 37357867
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Meta-analytic evidence for quantitative honesty in aposematic signals.
    White TE; Umbers KDL
    Proc Biol Sci; 2021 Apr; 288(1949):20210679. PubMed ID: 33906408
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Are the unken reflex and the aposematic colouration of Red-Bellied Toads efficient against bird predation?
    Bordignon DW; Caorsi VZ; Colombo P; Abadie M; Brack IV; Dasoler BT; Borges-Martins M
    PLoS One; 2018; 13(3):e0193551. PubMed ID: 29596437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system.
    Fennell JG; Talas L; Baddeley RJ; Cuthill IC; Scott-Samuel NE
    J R Soc Interface; 2019 May; 16(154):20190183. PubMed ID: 31138092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antipredator defences in motion: animals reduce predation risks by concealing or misleading motion signals.
    Tan M; Zhang S; Stevens M; Li D; Tan EJ
    Biol Rev Camb Philos Soc; 2024 Jun; 99(3):778-796. PubMed ID: 38174819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The golden mimicry complex uses a wide spectrum of defence to deter a community of predators.
    Pekár S; Petráková L; Bulbert MW; Whiting MJ; Herberstein ME
    Elife; 2017 Feb; 6():. PubMed ID: 28170317
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aposematism increases acoustic diversification and speciation in poison frogs.
    Santos JC; Baquero M; Barrio-Amorós C; Coloma LA; Erdtmann LK; Lima AP; Cannatella DC
    Proc Biol Sci; 2014 Dec; 281(1796):20141761. PubMed ID: 25320164
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Warning Coloration, Body Size, and the Evolution of Gregarious Behavior in Butterfly Larvae.
    McLellan CF; Cuthill IC; Montgomery SH
    Am Nat; 2023 Jul; 202(1):64-77. PubMed ID: 37384762
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anti-predator defences are linked with high levels of genetic differentiation in frogs.
    Medina I; Dong C; Marquez R; Perez DM; Wang IJ; Stuart-Fox D
    Proc Biol Sci; 2024 Jan; 291(2015):20232292. PubMed ID: 38264783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ontogenetic colour change and the evolution of aposematism: a case study in panic moth caterpillars.
    Grant JB
    J Anim Ecol; 2007 May; 76(3):439-47. PubMed ID: 17439461
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative analysis of passive defences in spiders (Araneae).
    Pekár S
    J Anim Ecol; 2014 Jul; 83(4):779-90. PubMed ID: 24205934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Venom in Furs: Facial Masks as Aposematic Signals in a Venomous Mammal.
    Nekaris KA; Weldon A; Imron MA; Maynard KQ; Nijman V; Poindexter SA; Morcatty TQ
    Toxins (Basel); 2019 Feb; 11(2):. PubMed ID: 30764557
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aposematic signalling in prey-predator systems: determining evolutionary stability when prey populations consist of a single species.
    Scaramangas A; Broom M
    J Math Biol; 2022 Jul; 85(2):13. PubMed ID: 35870017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Colour and pattern change against visually heterogeneous backgrounds in the tree frog Hyla japonica.
    Kang C; Kim YE; Jang Y
    Sci Rep; 2016 Mar; 6():22601. PubMed ID: 26932675
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying phenotype-environment matching in the protected Kerry spotted slug (Mollusca: Gastropoda) using digital photography: exposure to UV radiation determines cryptic colour morphs.
    O'Hanlon A; Feeney K; Dockery P; Gormally MJ
    Front Zool; 2017; 14():35. PubMed ID: 28702067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A fish can change its stripes: investigating the role of body colour and pattern in the bluelined goatfish.
    Tosetto L; Hart NS; Williamson JE
    PeerJ; 2024; 12():e16645. PubMed ID: 38304190
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The seven ways eukaryotes produce repeated colour motifs on external tissues.
    Galipot P; Damerval C; Jabbour F
    Biol Rev Camb Philos Soc; 2021 Aug; 96(4):1676-1693. PubMed ID: 33955646
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fitness and fur colouration: Testing the camouflage and thermoregulation hypotheses in an Arctic mammal.
    Di Bernardi C; Thierry AM; Eide NE; Bowler DE; Rød-Eriksen L; Blumentrath S; Tietgen L; Sandercock BK; Flagstad Ø; Landa A
    J Anim Ecol; 2021 May; 90(5):1328-1340. PubMed ID: 33660289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.