These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36514855)

  • 1. Testing drivers of acoustic divergence in cicadas (Cicadidae: Tettigettalna).
    Mendes R; Nunes VL; Marabuto E; Costa GJ; Silva SE; Paulo OS; Simões PC
    J Evol Biol; 2023 Feb; 36(2):461-479. PubMed ID: 36514855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds.
    Seddon N
    Evolution; 2005 Jan; 59(1):200-15. PubMed ID: 15792239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geological events and climate change drive diversification and speciation of mute cicadas in eastern continental Asia.
    Liu Y; Bu Y; Wang J; Wei C
    Mol Phylogenet Evol; 2023 Jul; 184():107809. PubMed ID: 37172861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary divergence in acoustic signals: causes and consequences.
    Wilkins MR; Seddon N; Safran RJ
    Trends Ecol Evol; 2013 Mar; 28(3):156-66. PubMed ID: 23141110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic divergence, population differentiation and phylogeography of the cicada Subpsaltria yangi based on molecular and acoustic data: an example of the early stage of speciation?
    Liu Y; Dietrich CH; Wei C
    BMC Evol Biol; 2019 Jan; 19(1):5. PubMed ID: 30621591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel evolutionary forces influence the evolution of male and female songs in a tropical songbird.
    Graham BA; Heath DD; Walter RP; Mark MM; Mennill DJ
    J Evol Biol; 2018 Jul; 31(7):979-994. PubMed ID: 29658161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic and temporal partitioning of cicada assemblages in city and mountain environments.
    Shieh BS; Liang SH; Chiu YW
    PLoS One; 2015; 10(1):e0116794. PubMed ID: 25590620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environment rather than character displacement explains call evolution in glassfrogs.
    Mendoza-Henao AM; Zamudio KR; Guayasamin JM; Escalona M; Parra-Olea G
    Evolution; 2023 Feb; 77(2):355-369. PubMed ID: 36611281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conflicting patterns of DNA barcoding and taxonomy in the cicada genus Tettigettalna from Southern Europe (Hemiptera: Cicadidae).
    Nunes VL; Mendes R; Marabuto E; Novais BM; Hertach T; Quartau JA; Seabra SG; Paulo OS; Simões PC
    Mol Ecol Resour; 2014 Jan; 14(1):27-38. PubMed ID: 24034529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do "mute" cicadas produce their calling songs?
    Luo C; Wei C; Nansen C
    PLoS One; 2015; 10(2):e0118554. PubMed ID: 25714608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology, songs and genetics identify two new cicada species from Morocco:
    Costa GJ; Nunes VL; Marabuto E; Mendes R; Laurentino TG; Quartau JA; Paulo OS; Simões PC
    Zootaxa; 2017 Mar; 4237(3):zootaxa.4237.3.4. PubMed ID: 28264279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geographic variation in the songs of neotropical singing mice: testing the relative importance of drift and local adaptation.
    Campbell P; Pasch B; Pino JL; Crino OL; Phillips M; Phelps SM
    Evolution; 2010 Jul; 64(7):1955-72. PubMed ID: 20148958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geographic variation in the acoustic traits of greater horseshoe bats: testing the importance of drift and ecological selection in evolutionary processes.
    Sun K; Luo L; Kimball RT; Wei X; Jin L; Jiang T; Li G; Feng J
    PLoS One; 2013; 8(8):e70368. PubMed ID: 23950926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How the environment shapes animal signals: a test of the acoustic adaptation hypothesis in frogs.
    Goutte S; Dubois A; Howard SD; Márquez R; Rowley JJL; Dehling JM; Grandcolas P; Xiong RC; Legendre F
    J Evol Biol; 2018 Jan; 31(1):148-158. PubMed ID: 29150984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Body size and sexual selection shaped the evolution of parrot calls.
    Marcolin F; Cardoso GC; Bento D; Reino L; Santana J
    J Evol Biol; 2022 Mar; 35(3):439-450. PubMed ID: 35147264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary diversification of the auditory organ sensilla in Neoconocephalus katydids (Orthoptera: Tettigoniidae) correlates with acoustic signal diversification over phylogenetic relatedness and life history.
    Strauß J; Alt JA; Ekschmitt K; Schul J; Lakes-Harlan R
    J Evol Biol; 2017 Jun; 30(6):1094-1109. PubMed ID: 28295793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergence in mating signals correlates with genetic distance and behavioural responses to playback.
    Sosa-López JR; Martínez Gómez JE; Mennill DJ
    J Evol Biol; 2016 Feb; 29(2):306-18. PubMed ID: 26528860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of acoustic and visual signals in Asian barbets.
    Gonzalez-Voyer A; den Tex RJ; Castelló A; Leonard JA
    J Evol Biol; 2013 Mar; 26(3):647-59. PubMed ID: 23305413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contingency and determinism in the evolution of bird song sound frequency.
    Friis JI; Dabelsteen T; Cardoso GC
    Sci Rep; 2021 Jun; 11(1):11600. PubMed ID: 34078943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergence in mating signals correlates with ecological variation in the migratory songbird, Swainson's thrush (Catharus ustulatus).
    Ruegg K; Slabbekoorn H; Clegg S; Smith TB
    Mol Ecol; 2006 Oct; 15(11):3147-56. PubMed ID: 16968261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.