These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 36515269)

  • 1. Homeostatic regulation through strengthening of neuronal network-correlated synaptic inputs.
    Barnes SJ; Keller GB; Keck T
    Elife; 2022 Dec; 11():. PubMed ID: 36515269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deprivation-Induced Homeostatic Spine Scaling In Vivo Is Localized to Dendritic Branches that Have Undergone Recent Spine Loss.
    Barnes SJ; Franzoni E; Jacobsen RI; Erdelyi F; Szabo G; Clopath C; Keller GB; Keck T
    Neuron; 2017 Nov; 96(4):871-882.e5. PubMed ID: 29107520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of NMDAR Function Prevents Normal Experience-Dependent Homeostatic Synaptic Plasticity in Mouse Primary Visual Cortex.
    Rodriguez G; Mesik L; Gao M; Parkins S; Saha R; Lee HK
    J Neurosci; 2019 Sep; 39(39):7664-7673. PubMed ID: 31413075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transcriptional constraint mechanism limits the homeostatic response to activity deprivation in mammalian neocortex.
    Valakh V; Wise D; Zhu XA; Sha M; Fok J; Van Hooser SD; Schectman R; Cepeda I; Kirk R; O'Toole SM; Nelson SB
    Elife; 2023 Feb; 12():. PubMed ID: 36749029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex.
    Zhong LR; Chen X; Park E; Südhof TC; Chen L
    J Neurosci; 2018 Dec; 38(49):10454-10466. PubMed ID: 30355624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered sensory experience exacerbates stable dendritic spine and synapse loss in a mouse model of Huntington's disease.
    Murmu RP; Li W; Szepesi Z; Li JY
    J Neurosci; 2015 Jan; 35(1):287-98. PubMed ID: 25568121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Component Structural Plasticity Mediated by αCaMKII Autophosphorylation on Basal Dendrites of Cortical Layer 2/3 Neurones.
    Seaton G; Hodges G; de Haan A; Grewal A; Pandey A; Kasai H; Fox K
    J Neurosci; 2020 Mar; 40(11):2228-2245. PubMed ID: 32001612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex.
    Goel A; Lee HK
    J Neurosci; 2007 Jun; 27(25):6692-700. PubMed ID: 17581956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex In Vivo.
    Barnes SJ; Sammons RP; Jacobsen RI; Mackie J; Keller GB; Keck T
    Neuron; 2015 Jun; 86(5):1290-303. PubMed ID: 26050045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homeostatic Plasticity of Subcellular Neuronal Structures: From Inputs to Outputs.
    Wefelmeyer W; Puhl CJ; Burrone J
    Trends Neurosci; 2016 Oct; 39(10):656-667. PubMed ID: 27637565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental switch in the polarity of experience-dependent synaptic changes in layer 6 of mouse visual cortex.
    Petrus E; Anguh TT; Pho H; Lee A; Gammon N; Lee HK
    J Neurophysiol; 2011 Nov; 106(5):2499-505. PubMed ID: 21813745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca
    Sanderson JL; Scott JD; Dell'Acqua ML
    J Neurosci; 2018 Mar; 38(11):2863-2876. PubMed ID: 29440558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex.
    Tropea D; Majewska AK; Garcia R; Sur M
    J Neurosci; 2010 Aug; 30(33):11086-95. PubMed ID: 20720116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct sensory requirements for unimodal and cross-modal homeostatic synaptic plasticity.
    He K; Petrus E; Gammon N; Lee HK
    J Neurosci; 2012 Jun; 32(25):8469-74. PubMed ID: 22723686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo.
    Keck T; Keller GB; Jacobsen RI; Eysel UT; Bonhoeffer T; Hübener M
    Neuron; 2013 Oct; 80(2):327-34. PubMed ID: 24139037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory modality-specific homeostatic plasticity in the developing optic tectum.
    Deeg KE; Aizenman CD
    Nat Neurosci; 2011 May; 14(5):548-50. PubMed ID: 21441922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconciling homeostatic and use-dependent plasticity in the context of somatosensory deprivation.
    Orczyk JJ; Garraghty PE
    Neural Plast; 2015; 2015():290819. PubMed ID: 25866682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Amyloid triggers aberrant over-scaling of homeostatic synaptic plasticity.
    Gilbert J; Shu S; Yang X; Lu Y; Zhu LQ; Man HY
    Acta Neuropathol Commun; 2016 Dec; 4(1):131. PubMed ID: 27955702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentalized versus global synaptic plasticity on dendrites controlled by experience.
    Makino H; Malinow R
    Neuron; 2011 Dec; 72(6):1001-11. PubMed ID: 22196335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-course and mechanisms of homeostatic plasticity in layers 2/3 and 5 of the barrel cortex.
    Glazewski S; Greenhill S; Fox K
    Philos Trans R Soc Lond B Biol Sci; 2017 Mar; 372(1715):. PubMed ID: 28093546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.