These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 36515366)
1. Engineering of Acid-Resistant d-Allulose 3-Epimerase for Functional Juice Production. Li L; Zhang Q; Wang T; Qi H; Wei M; Lu F; Guan L; Mao S; Qin HM J Agric Food Chem; 2022 Dec; 70(51):16298-16306. PubMed ID: 36515366 [TBL] [Abstract][Full Text] [Related]
2. Directional immobilization of D-allulose 3-epimerase using SpyTag/SpyCatcher strategy as a robust biocatalyst for synthesizing D-allulose. Gao X; Wei C; Qi H; Li C; Lu F; Qin HM Food Chem; 2023 Feb; 401():134199. PubMed ID: 36115227 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the thermostability of D-allulose 3-epimerase from Clostridium cellulolyticum H10 via a dual-enzyme screening system. Feng Y; Pu Z; Zhu L; Wu M; Yang L; Yu H; Lin J Enzyme Microb Technol; 2022 Sep; 159():110054. PubMed ID: 35526470 [TBL] [Abstract][Full Text] [Related]
4. Identification of hyperthermophilic D-allulose 3-epimerase from Thermotoga sp. and its application as a high-performance biocatalyst for D-allulose synthesis. Shen JD; Xu BP; Yu TL; Fei YX; Cai X; Huang LG; Jin LQ; Liu ZQ; Zheng YG Bioprocess Biosyst Eng; 2024 Jun; 47(6):841-850. PubMed ID: 38676737 [TBL] [Abstract][Full Text] [Related]
5. Efficient D-allulose synthesis under acidic conditions by auto-inducing expression of the tandem D-allulose 3-epimerase genes in Bacillus subtilis. Hu M; Wei Y; Zhang R; Shao M; Yang T; Xu M; Zhang X; Rao Z Microb Cell Fact; 2022 Apr; 21(1):63. PubMed ID: 35440084 [TBL] [Abstract][Full Text] [Related]
6. Optimization of Ultrahigh-Throughput Screening Assay for Protein Engineering of d-Allulose 3-Epimerase. Liu Z; Liu S; Jia J; Wang L; Wang F; Pan X; Wu J; Chen S Biomolecules; 2022 Oct; 12(11):. PubMed ID: 36358897 [TBL] [Abstract][Full Text] [Related]
7. Improving the enzyme property of D-allulose 3-epimerase from a thermophilic organism of Halanaerobium congolense through rational design. Zhu Z; Li L; Zhang W; Li C; Mao S; Lu F; Qin HM Enzyme Microb Technol; 2021 Sep; 149():109850. PubMed ID: 34311887 [TBL] [Abstract][Full Text] [Related]
8. Two-step biosynthesis of d-allulose via a multienzyme cascade for the bioconversion of fruit juices. Li C; Li L; Feng Z; Guan L; Lu F; Qin HM Food Chem; 2021 Apr; 357():129746. PubMed ID: 33894574 [TBL] [Abstract][Full Text] [Related]
9. Development of food-grade expression system for d-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to D-allulose. Yang J; Tian C; Zhang T; Ren C; Zhu Y; Zeng Y; Men Y; Sun Y; Ma Y Biotechnol Bioeng; 2019 Apr; 116(4):745-756. PubMed ID: 30597517 [TBL] [Abstract][Full Text] [Related]
10. Boosting the Heterologous Expression of d-Allulose 3-Epimerase in Liu Z; Wang Y; Liu S; Guo X; Zhao T; Wu J; Chen S J Agric Food Chem; 2022 Sep; 70(38):12128-12134. PubMed ID: 36099523 [TBL] [Abstract][Full Text] [Related]
11. Efficient enzymatic synthesis of d-allulose using a novel d-allulose-3-epimerase from Caballeronia insecticola. Li Z; Feng L; Chen Z; Hu Y; Fei K; Xu H; Gao XD J Sci Food Agric; 2023 Jan; 103(1):339-348. PubMed ID: 35871484 [TBL] [Abstract][Full Text] [Related]
12. Thermostability Improvement of the d-Allulose 3-Epimerase from Dorea sp. CAG317 by Site-Directed Mutagenesis at the Interface Regions. Zhang W; Zhang Y; Huang J; Chen Z; Zhang T; Guang C; Mu W J Agric Food Chem; 2018 Jun; 66(22):5593-5601. PubMed ID: 29762031 [TBL] [Abstract][Full Text] [Related]
13. Production of d-allulose from d-glucose by Escherichia coli transformant cells co-expressing d-glucose isomerase and d-psicose 3-epimerase genes. Zhang W; Li H; Jiang B; Zhang T; Mu W J Sci Food Agric; 2017 Aug; 97(10):3420-3426. PubMed ID: 28009059 [TBL] [Abstract][Full Text] [Related]
14. Substantial Improvement of an Epimerase for the Synthesis of D-Allulose by Biosensor-Based High-Throughput Microdroplet Screening. Li C; Gao X; Qi H; Zhang W; Li L; Wei C; Wei M; Sun X; Wang S; Wang L; Ji Y; Mao S; Zhu Z; Tanokura M; Lu F; Qin HM Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202216721. PubMed ID: 36658306 [TBL] [Abstract][Full Text] [Related]
15. Semi-rational engineering of D-allulose 3-epimerase for simultaneously improving the catalytic activity and thermostability based on D-allulose biosensor. Li Z; Hu Y; Yu C; Fei K; Shen L; Liu Y; Nakanishi H Biotechnol J; 2024 Aug; 19(8):e2400280. PubMed ID: 39167550 [TBL] [Abstract][Full Text] [Related]
16. Continuous Spectrophotometric Assay for High-Throughput Screening of Predominant d-Allulose 3-Epimerases. Li C; Zhang W; Wei C; Gao X; Mao S; Lu F; Qin HM J Agric Food Chem; 2021 Oct; 69(39):11637-11645. PubMed ID: 34569239 [TBL] [Abstract][Full Text] [Related]
17. Bioproduction of D-allulose: Properties, applications, purification, and future perspectives. Hu M; Li M; Jiang B; Zhang T Compr Rev Food Sci Food Saf; 2021 Nov; 20(6):6012-6026. PubMed ID: 34668314 [TBL] [Abstract][Full Text] [Related]
18. Rational design improves both thermostability and activity of a new D-tagatose 3-epimerase from Kroppenstedtia eburnean to produce D-allulose. Guo D; Wang Z; Wei W; Song W; Wu J; Wen J; Hu G; Li X; Gao C; Chen X; Liu L Enzyme Microb Technol; 2024 Aug; 178():110448. PubMed ID: 38657401 [TBL] [Abstract][Full Text] [Related]
19. Improved thermostability of D-allulose 3-epimerase from Clostridium bolteae ATCC BAA-613 by proline residue substitution. Wang H; Chen J; Zhao J; Li H; Wei X; Liu J Protein Expr Purif; 2022 Nov; 199():106145. PubMed ID: 35863720 [TBL] [Abstract][Full Text] [Related]
20. Sequence- and Structure-Based Mining of Thermostable D-Allulose 3-Epimerase and Computer-Guided Protein Engineering To Improve Enzyme Activity. Qi H; Wang T; Li H; Li C; Guan L; Liu W; Wang J; Lu F; Mao S; Qin HM J Agric Food Chem; 2023 Nov; 71(47):18431-18442. PubMed ID: 37970673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]