These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 36515411)
1. Adaptations in motor unit properties underlying changes in recruitment, rate coding, and maximum force. Dideriksen J; Del Vecchio A J Neurophysiol; 2023 Jan; 129(1):235-246. PubMed ID: 36515411 [TBL] [Abstract][Full Text] [Related]
2. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. Del Vecchio A; Casolo A; Negro F; Scorcelletti M; Bazzucchi I; Enoka R; Felici F; Farina D J Physiol; 2019 Apr; 597(7):1873-1887. PubMed ID: 30727028 [TBL] [Abstract][Full Text] [Related]
3. Neural and muscular determinants of maximal rate of force development. Dideriksen JL; Del Vecchio A; Farina D J Neurophysiol; 2020 Jan; 123(1):149-157. PubMed ID: 31618103 [TBL] [Abstract][Full Text] [Related]
4. Lack of increased rate of force development after strength training is explained by specific neural, not muscular, motor unit adaptations. Del Vecchio A; Casolo A; Dideriksen JL; Aagaard P; Felici F; Falla D; Farina D J Appl Physiol (1985); 2022 Jan; 132(1):84-94. PubMed ID: 34792405 [TBL] [Abstract][Full Text] [Related]
5. Models of recruitment and rate coding organization in motor-unit pools. Fuglevand AJ; Winter DA; Patla AE J Neurophysiol; 1993 Dec; 70(6):2470-88. PubMed ID: 8120594 [TBL] [Abstract][Full Text] [Related]
6. An examination of a potential organized motor unit firing rate and recruitment scheme of an antagonist muscle during isometric contractions. Reece TM; Herda TJ J Neurophysiol; 2021 Jun; 125(6):2094-2106. PubMed ID: 33909509 [TBL] [Abstract][Full Text] [Related]
7. Fine-wire recordings of flexor hallucis brevis motor units up to maximal voluntary contraction reveal a flexible, nonrigid mechanism for force control. Aeles J; Kelly LA; Yoshitake Y; Cresswell AG J Neurophysiol; 2020 May; 123(5):1766-1774. PubMed ID: 32267195 [TBL] [Abstract][Full Text] [Related]
8. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Gabriel DA; Kamen G; Frost G Sports Med; 2006; 36(2):133-49. PubMed ID: 16464122 [TBL] [Abstract][Full Text] [Related]
9. Motor unit control properties in constant-force isometric contractions. de Luca CJ; Foley PJ; Erim Z J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270 [TBL] [Abstract][Full Text] [Related]
10. Strength training, but not endurance training, reduces motor unit discharge rate variability. Vila-Chã C; Falla D J Electromyogr Kinesiol; 2016 Feb; 26():88-93. PubMed ID: 26586649 [TBL] [Abstract][Full Text] [Related]
11. Motor unit recruitment in human biceps brachii during sustained voluntary contractions. Riley ZA; Maerz AH; Litsey JC; Enoka RM J Physiol; 2008 Apr; 586(8):2183-93. PubMed ID: 18292128 [TBL] [Abstract][Full Text] [Related]
12. Behavior of motor units during submaximal isometric contractions in chronically strength-trained individuals. Casolo A; Del Vecchio A; Balshaw TG; Maeo S; Lanza MB; Felici F; Folland JP; Farina D J Appl Physiol (1985); 2021 Nov; 131(5):1584-1598. PubMed ID: 34617822 [TBL] [Abstract][Full Text] [Related]
13. Adaptations in biceps brachii motor unit activity after repeated bouts of eccentric exercise in elbow flexor muscles. Dartnall TJ; Nordstrom MA; Semmler JG J Neurophysiol; 2011 Mar; 105(3):1225-35. PubMed ID: 21248060 [TBL] [Abstract][Full Text] [Related]
14. Resistance training: cortical, spinal, and motor unit adaptations. Griffin L; Cafarelli E Can J Appl Physiol; 2005 Jun; 30(3):328-40. PubMed ID: 16129897 [TBL] [Abstract][Full Text] [Related]
15. Adaptations in motor unit discharge activity with force control training in young and older human adults. Patten C; Kamen G Eur J Appl Physiol; 2000 Oct; 83(2-3):128-43. PubMed ID: 11104053 [TBL] [Abstract][Full Text] [Related]
16. Training adaptations in the behavior of human motor units. Duchateau J; Semmler JG; Enoka RM J Appl Physiol (1985); 2006 Dec; 101(6):1766-75. PubMed ID: 16794023 [TBL] [Abstract][Full Text] [Related]
17. Time-related changes in firing rates are influenced by recruitment threshold and twitch force potentiation in the first dorsal interosseous. Miller JD; Herda TJ; Trevino MA; Sterczala AJ; Ciccone AB Exp Physiol; 2017 Aug; 102(8):950-961. PubMed ID: 28544046 [TBL] [Abstract][Full Text] [Related]
18. The effects of local forearm heating and cooling on motor unit properties during submaximal contractions. Mallette MM; Cheung SS; Kumar RI; Hodges GJ; Holmes MWR; Gabriel DA Exp Physiol; 2021 Jan; 106(1):200-211. PubMed ID: 31912952 [TBL] [Abstract][Full Text] [Related]
19. Vastus lateralis surface and single motor unit electromyography during shortening, lengthening and isometric contractions corrected for mode-dependent differences in force-generating capacity. Altenburg TM; de Ruiter CJ; Verdijk PW; van Mechelen W; de Haan A Acta Physiol (Oxf); 2009 Jul; 196(3):315-28. PubMed ID: 19032599 [TBL] [Abstract][Full Text] [Related]
20. Motoneuron-driven computational muscle modelling with motor unit resolution and subject-specific musculoskeletal anatomy. Caillet AH; Phillips ATM; Farina D; Modenese L PLoS Comput Biol; 2023 Dec; 19(12):e1011606. PubMed ID: 38060619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]