These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 36515713)
1. Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers. Li J; Li X; Ma J; Wang F; Cui S; Ye Z Eur Radiol; 2023 Jul; 33(7):5193-5204. PubMed ID: 36515713 [TBL] [Abstract][Full Text] [Related]
2. Machine-learning-based contrast-enhanced computed tomography radiomic analysis for categorization of ovarian tumors. Li J; Zhang T; Ma J; Zhang N; Zhang Z; Ye Z Front Oncol; 2022; 12():934735. PubMed ID: 36016613 [TBL] [Abstract][Full Text] [Related]
3. CT-Based Radiomics for the Preoperative Prediction of Occult Peritoneal Metastasis in Epithelial Ovarian Cancers. Li J; Zhang J; Wang F; Ma J; Cui S; Ye Z Acad Radiol; 2024 May; 31(5):1918-1930. PubMed ID: 38072725 [TBL] [Abstract][Full Text] [Related]
4. Contrast-enhanced CT radiomics for preoperative prediction of stage in epithelial ovarian cancer: a multicenter study. Leng Y; Kan A; Wang X; Li X; Xiao X; Wang Y; Liu L; Gong L BMC Cancer; 2024 Mar; 24(1):307. PubMed ID: 38448945 [TBL] [Abstract][Full Text] [Related]
5. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359 [No Abstract] [Full Text] [Related]
6. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study. Wei Q; Chen Z; Tang Y; Chen W; Zhong L; Mao L; Hu S; Wu Y; Deng K; Yang W; Liu X Eur Radiol; 2023 Mar; 33(3):1906-1917. PubMed ID: 36355199 [TBL] [Abstract][Full Text] [Related]
7. CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors. Zheng Y; Zhou D; Liu H; Wen M Eur Radiol; 2022 Oct; 32(10):6953-6964. PubMed ID: 35484339 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study. Yang Y; Cheng J; Peng Z; Yi L; Lin Z; He A; Jin M; Cui C; Liu Y; Zhong Q; Zuo M Acad Radiol; 2024 Apr; 31(4):1615-1628. PubMed ID: 37949702 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study. Chen W; Lin G; Chen Y; Cheng F; Li X; Ding J; Zhong Y; Kong C; Chen M; Xia S; Lu C; Ji J BMC Cancer; 2024 Apr; 24(1):418. PubMed ID: 38580939 [TBL] [Abstract][Full Text] [Related]
10. The CT-based intratumoral and peritumoral machine learning radiomics analysis in predicting lymph node metastasis in rectal carcinoma. Yuan H; Xu X; Tu S; Chen B; Wei Y; Ma Y BMC Gastroenterol; 2022 Nov; 22(1):463. PubMed ID: 36384504 [TBL] [Abstract][Full Text] [Related]
11. Preoperative prediction of macrotrabecular-massive hepatocellular carcinoma through dynamic contrast-enhanced magnetic resonance imaging-based radiomics. Zhang Y; He D; Liu J; Wei YG; Shi LL World J Gastroenterol; 2023 Apr; 29(13):2001-2014. PubMed ID: 37155523 [TBL] [Abstract][Full Text] [Related]
12. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer. Li X; Li C; Wang H; Jiang L; Chen M PeerJ; 2024; 12():e17683. PubMed ID: 39026540 [TBL] [Abstract][Full Text] [Related]
13. The value of machine learning based radiomics model in preoperative detection of perineural invasion in gastric cancer: a two-center study. Gao X; Cui J; Wang L; Wang Q; Ma T; Yang J; Ye Z Front Oncol; 2023; 13():1205163. PubMed ID: 37388227 [TBL] [Abstract][Full Text] [Related]
14. Enhanced computed tomography radiomics-based machine-learning methods for predicting the Fuhrman grades of renal clear cell carcinoma. Yin RH; Yang YC; Tang XQ; Shi HF; Duan SF; Pan CJ J Xray Sci Technol; 2021; 29(6):1149-1160. PubMed ID: 34657848 [TBL] [Abstract][Full Text] [Related]
15. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related]
16. Prediction of the activity of Crohn's disease based on CT radiomics combined with machine learning models. Li T; Liu Y; Guo J; Wang Y J Xray Sci Technol; 2022; 30(6):1155-1168. PubMed ID: 35988261 [TBL] [Abstract][Full Text] [Related]
17. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening. Bülbül HM; Burakgazi G; Kesimal U; Kaba E Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559 [TBL] [Abstract][Full Text] [Related]
18. Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Mukherjee S; Patra A; Khasawneh H; Korfiatis P; Rajamohan N; Suman G; Majumder S; Panda A; Johnson MP; Larson NB; Wright DE; Kline TL; Fletcher JG; Chari ST; Goenka AH Gastroenterology; 2022 Nov; 163(5):1435-1446.e3. PubMed ID: 35788343 [TBL] [Abstract][Full Text] [Related]
19. Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer. Shu Z; Mao D; Song Q; Xu Y; Pang P; Zhang Y Eur Radiol; 2022 Feb; 32(2):1002-1013. PubMed ID: 34482429 [TBL] [Abstract][Full Text] [Related]
20. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma. Wang Y; Bai G; Huang M; Chen W Front Oncol; 2024; 14():1308317. PubMed ID: 38549935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]