These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3651572)

  • 1. Cell wall elastic constitutive laws and stress-strain behavior of plant vegetative tissue.
    Gates RS; Pitt RE; Ruina A; Cooke JR
    Biorheology; 1986; 23(5):453-66. PubMed ID: 3651572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of plant cell walls probed by relaxation spectra.
    Hansen SL; Ray PM; Karlsson AO; Jørgensen B; Borkhardt B; Petersen BL; Ulvskov P
    Plant Physiol; 2011 Jan; 155(1):246-58. PubMed ID: 21075961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanics model of the compression of cells with finite initial contact area.
    Qiong G; Pitt RE; Ruina A
    Biorheology; 1990; 27(2):225-40. PubMed ID: 2375959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic properties of plant cell walls--III. Hysteresis loop in the stress-strain curve at constant strain rate.
    Masuda Y
    Biorheology; 1978; 15(2):87-97. PubMed ID: 747759
    [No Abstract]   [Full Text] [Related]  

  • 5. A mechanics model for the compression of plant and vegetative tissues.
    Zhu HX; Melrose JR
    J Theor Biol; 2003 Mar; 221(1):89-101. PubMed ID: 12634046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles.
    Wu HI; Spence RD; Sharpe PJ; Goeschl JD
    Plant Cell Environ; 1985 Nov; 8(8):563-70. PubMed ID: 11541279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic properties of plant cell walls--II. Effect of pre-extension rate on stress relaxation.
    Fujihara S; Yamamoto R; Masuda Y
    Biorheology; 1978; 15(2):77-85. PubMed ID: 747758
    [No Abstract]   [Full Text] [Related]  

  • 8. Viscoelastic properties of plant cell walls--I. Mathematical formulation for stress relaxation with consideration for pre-extension rate.
    Fujihara S; Yamamoto R; Masuda Y
    Biorheology; 1978; 15(2):63-75. PubMed ID: 747757
    [No Abstract]   [Full Text] [Related]  

  • 9. Elastic constitutive laws for cow teat tissue undergoing finite deformations.
    Gates RS; Scott NR; Pitt RE; Bartel DL
    Biorheology; 1985; 22(6):495-508. PubMed ID: 3834956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis.
    Mak AF
    Biorheology; 1986; 23(4):371-83. PubMed ID: 3779062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization.
    Lokshin O; Lanir Y
    J Biomech Eng; 2009 Mar; 131(3):031009. PubMed ID: 19154068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows.
    Mak AF
    J Biomech Eng; 1986 May; 108(2):123-30. PubMed ID: 3724099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic properties of the composite outer hair cell wall.
    Spector AA; Brownell WE; Popel AS
    Ann Biomed Eng; 1998; 26(1):157-65. PubMed ID: 10355560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH and expansin action on single suspension-cultured tomato (Lycopersicon esculentum) cells.
    Wang CX; Wang L; McQueen-Mason SJ; Pritchard J; Thomas CR
    J Plant Res; 2008 Sep; 121(5):527-34. PubMed ID: 18615263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damage mechanisms in uniaxial compression of single enamel rods.
    An B; Wang R; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2015 Feb; 42():1-9. PubMed ID: 25460920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a rheological constitutive relation for a soft biological tissue.
    Sharma MG; Rafie S
    Biorheology; 1983; 20(2):187-97. PubMed ID: 6871434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of brain tissue in tension.
    Miller K; Chinzei K
    J Biomech; 2002 Apr; 35(4):483-90. PubMed ID: 11934417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on constitutive equation that models bone tissue.
    Pawlikowski M; Klasztorny M; Skalski K
    Acta Bioeng Biomech; 2008; 10(4):39-47. PubMed ID: 19385511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of primary plant cell wall analogues.
    Chanliaud E; Burrows KM; Jeronimidis G; Gidley MJ
    Planta; 2002 Oct; 215(6):989-96. PubMed ID: 12355159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.