These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3651572)

  • 21. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A finite viscoelastic-plastic model for describing the uniaxial ratchetting of soft biological tissues.
    Zhu Y; Kang G; Kan Q; Yu C
    J Biomech; 2014 Mar; 47(5):996-1003. PubMed ID: 24462380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular insights into the complex mechanics of plant epidermal cell walls.
    Zhang Y; Yu J; Wang X; Durachko DM; Zhang S; Cosgrove DJ
    Science; 2021 May; 372(6543):706-711. PubMed ID: 33986175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical characterization of membranelike biological tissue.
    Thibault LE; Fry DL
    J Biomech Eng; 1983 Feb; 105(1):31-8. PubMed ID: 6843099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function.
    Aggarwal A
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1309-1327. PubMed ID: 28251368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls.
    Hayashi K
    J Biomech Eng; 1993 Nov; 115(4B):481-8. PubMed ID: 8302029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constitutive laws with damage effect for the human great saphenous vein.
    Li W
    J Mech Behav Biomed Mater; 2018 May; 81():202-213. PubMed ID: 29529591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell wall structure and mechanical properties of Phycomyces.
    Ahlquist CN; Iverson SC; Jahsman WE
    J Biomech; 1975; 8(6):357-62. PubMed ID: 1206037
    [No Abstract]   [Full Text] [Related]  

  • 30. A transversely isotropic viscohyperelastic-damage model for the brain tissue with strain rate sensitivity.
    He G; Fan L
    J Biomech; 2023 Apr; 151():111554. PubMed ID: 36958091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The theory of viscoelasticity in biomaterials.
    Dorrington KL
    Symp Soc Exp Biol; 1980; 34():289-314. PubMed ID: 7256557
    [No Abstract]   [Full Text] [Related]  

  • 33. Two-dimensional stress-relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine.
    Reihsner R; Menzel EJ
    J Biomech; 1998 Nov; 31(11):985-93. PubMed ID: 9880055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elastostatics of a spherical inclusion in homogeneous biological media.
    Bilgen M; Insana MF
    Phys Med Biol; 1998 Jan; 43(1):1-20. PubMed ID: 9483620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Equivalence between short-time biphasic and incompressible elastic material responses.
    Ateshian GA; Ellis BJ; Weiss JA
    J Biomech Eng; 2007 Jun; 129(3):405-12. PubMed ID: 17536908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterizing microscale biological samples under tensile loading: stress-strain behavior of cell wall fragment of onion outer epidermis.
    Zamil MS; Yi H; Haque MA; Puri VM
    Am J Bot; 2013 Jun; 100(6):1105-15. PubMed ID: 23720433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.
    Ptashnyk M; Seguin B
    Bull Math Biol; 2016 Nov; 78(11):2135-2164. PubMed ID: 27761699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shifting foundations: the mechanical cell wall and development.
    Braybrook SA; Jönsson H
    Curr Opin Plant Biol; 2016 Feb; 29():115-20. PubMed ID: 26799133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior.
    Armentano RL; Barra JG; Levenson J; Simon A; Pichel RH
    Circ Res; 1995 Mar; 76(3):468-78. PubMed ID: 7859392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.