These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36515789)

  • 21. Does the accuracy of pedicle screw placement differ between the attending surgeon and resident in navigated robotic-assisted minimally invasive spine surgery?
    Vardiman AB; Wallace DJ; Booher GA; Crawford NR; Riggleman JR; Greeley SL; Ledonio CG
    J Robot Surg; 2020 Aug; 14(4):567-572. PubMed ID: 31542860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Minimally-Invasive Assisted Robotic Spine Surgery (MARSS).
    Pérez de la Torre RA; Ramanathan S; Williams AL; Perez-Cruet MJ
    Front Surg; 2022; 9():884247. PubMed ID: 35903260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of robotics in minimally invasive spine surgery.
    Staub BN; Sadrameli SS
    J Spine Surg; 2019 Jun; 5(Suppl 1):S31-S40. PubMed ID: 31380491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pedicle screw accuracy in clinical utilization of minimally invasive navigated robot-assisted spine surgery.
    Vardiman AB; Wallace DJ; Crawford NR; Riggleman JR; Ahrendtsen LA; Ledonio CG
    J Robot Surg; 2020 Jun; 14(3):409-413. PubMed ID: 31321615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current applications of robotics in spine surgery: a systematic review of the literature.
    Joseph JR; Smith BW; Liu X; Park P
    Neurosurg Focus; 2017 May; 42(5):E2. PubMed ID: 28463618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robotics in Spine Surgery: A Technical Overview and Review of Key Concepts.
    Farber SH; Pacult MA; Godzik J; Walker CT; Turner JD; Porter RW; Uribe JS
    Front Surg; 2021; 8():578674. PubMed ID: 33708791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robotic Surgery Research in Urology: A Bibliometric Analysis of Field and Top 100 Articles.
    Jackson SR; Patel MI
    J Endourol; 2019 May; 33(5):389-395. PubMed ID: 30892070
    [No Abstract]   [Full Text] [Related]  

  • 28. The current state of navigation in robotic spine surgery.
    Huang M; Tetreault TA; Vaishnav A; York PJ; Staub BN
    Ann Transl Med; 2021 Jan; 9(1):86. PubMed ID: 33553379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robotic-assisted navigated minimally invasive pedicle screw placement in the first 100 cases at a single institution.
    Huntsman KT; Ahrendtsen LA; Riggleman JR; Ledonio CG
    J Robot Surg; 2020 Feb; 14(1):199-203. PubMed ID: 31016575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Top 50 Articles on Minimally Invasive Spine Surgery.
    Virk SS; Yu E
    Spine (Phila Pa 1976); 2017 Apr; 42(7):513-519. PubMed ID: 27438385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robotic navigation in spine surgery: Where are we now and where are we going?
    Wang TY; Park C; Dalton T; Rajkumar S; McCray E; Owolo E; Than KD; Abd-El-Barr MM
    J Clin Neurosci; 2021 Dec; 94():298-304. PubMed ID: 34863454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy of Pedicle Screw Placement and Four Other Clinical Outcomes of Robotic Guidance Technique versus Computer-Assisted Navigation in Thoracolumbar Surgery: A Meta-Analysis.
    Zhou LP; Zhang RJ; Sun YW; Zhang L; Shen CL
    World Neurosurg; 2021 Feb; 146():e139-e150. PubMed ID: 33075574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimally-invasive cardiac surgery: a bibliometric analysis of impact and force to identify key and facilitating advanced training.
    Karsan RB; Allen R; Powell A; Beattie GW
    J Cardiothorac Surg; 2022 Sep; 17(1):236. PubMed ID: 36114506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robotic-Assisted Spinal Surgery: Current Generation Instrumentation and New Applications.
    Elswick CM; Strong MJ; Joseph JR; Saadeh Y; Oppenlander M; Park P
    Neurosurg Clin N Am; 2020 Jan; 31(1):103-110. PubMed ID: 31739920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical applications of robotic surgery platforms: a comprehensive review.
    Gamal A; Moschovas MC; Jaber AR; Saikali S; Perera R; Headley C; Patel E; Rogers T; Roche MW; Leveillee RJ; Albala D; Patel V
    J Robot Surg; 2024 Jan; 18(1):29. PubMed ID: 38231279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spinal robotics in cervical spine surgery: a systematic review with key concepts and technical considerations.
    Beyer RS; Nguyen A; Brown NJ; Gendreau JL; Hatter MJ; Pooladzandi O; Pham MH
    J Neurosurg Spine; 2023 Jan; 38(1):66-74. PubMed ID: 36087333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Opportunities and challenges for robotic-assisted spine surgery: feasible indications for the MAZOR™ X Stealth Edition.
    McIntosh MK; Christie S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery.
    Molliqaj G; Schatlo B; Alaid A; Solomiichuk V; Rohde V; Schaller K; Tessitore E
    Neurosurg Focus; 2017 May; 42(5):E14. PubMed ID: 28463623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design methodology for a simulator of a robotic surgical system.
    Julian DL; Smith RD; Tanaka ADS; Dubin A
    J Robot Surg; 2019 Aug; 13(4):567-574. PubMed ID: 30506339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global research status and trends in orthopaedic surgical robotics: a bibliometric and visualisation analysis study.
    Guo X; Wang D; Li J; Zhang H
    J Robot Surg; 2023 Aug; 17(4):1743-1756. PubMed ID: 37017859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.