These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36516597)

  • 1. A quantified comparison of cortical atlases on the basis of trait morphometricity.
    Fürtjes AE; Cole JH; Couvy-Duchesne B; Ritchie SJ
    Cortex; 2023 Jan; 158():110-126. PubMed ID: 36516597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified framework for association and prediction from vertex-wise grey-matter structure.
    Couvy-Duchesne B; Strike LT; Zhang F; Holtz Y; Zheng Z; Kemper KE; Yengo L; Colliot O; Wright MJ; Wray NR; Yang J; Visscher PM
    Hum Brain Mapp; 2020 Oct; 41(14):4062-4076. PubMed ID: 32687259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A whole brain fMRI atlas generated via spatially constrained spectral clustering.
    Craddock RC; James GA; Holtzheimer PE; Hu XP; Mayberg HS
    Hum Brain Mapp; 2012 Aug; 33(8):1914-28. PubMed ID: 21769991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patch-based group-wise sparse representation.
    Wu Z; Wang L; Lin W; Gilmore JH; Li G; Shen D
    Hum Brain Mapp; 2019 Sep; 40(13):3860-3880. PubMed ID: 31115143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parcellation of the neonatal cortex using Surface-based Melbourne Children's Regional Infant Brain atlases (M-CRIB-S).
    Adamson CL; Alexander B; Ball G; Beare R; Cheong JLY; Spittle AJ; Doyle LW; Anderson PJ; Seal ML; Thompson DK
    Sci Rep; 2020 Mar; 10(1):4359. PubMed ID: 32152381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications.
    Li G; Wang L; Shi F; Gilmore JH; Lin W; Shen D
    Med Image Anal; 2015 Oct; 25(1):22-36. PubMed ID: 25980388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GeoSP: A parallel method for a cortical surface parcellation based on geodesic distance.
    Lopez-Lopez N; Vazquez A; Poupon C; Mangin JF; Ladra S; Guevara P
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1696-1700. PubMed ID: 33018323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Human Brain Atlases in Terms of Content, Applications, Functionality, and Availability.
    Nowinski WL
    Neuroinformatics; 2021 Jan; 19(1):1-22. PubMed ID: 32728882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of atlas-based segmentation of hippocampi in healthy humans.
    Rodionov R; Chupin M; Williams E; Hammers A; Kesavadas C; Lemieux L
    Magn Reson Imaging; 2009 Oct; 27(8):1104-9. PubMed ID: 19261422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying imaging genetic associations via regional morphometricity estimation.
    Bao J; Wen Z; Kim M; Saykin AJ; Thompson PM; Zhao Y; Shen L;
    Pac Symp Biocomput; 2022; 27():97-108. PubMed ID: 34890140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Coarse to Fine-Grained Parcellation of the Cortical Surface Using a Fiber-Bundle Atlas.
    López-López N; Vázquez A; Houenou J; Poupon C; Mangin JF; Ladra S; Guevara P
    Front Neuroinform; 2020; 14():32. PubMed ID: 33071768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Brain Atlases in Stroke Management.
    Nowinski WL
    Neuroinformatics; 2020 Oct; 18(4):549-567. PubMed ID: 32291568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-specific structural fetal brain atlases construction and cortical development quantification for chinese population.
    Wu J; Sun T; Yu B; Li Z; Wu Q; Wang Y; Qian Z; Zhang Y; Jiang L; Wei H
    Neuroimage; 2021 Nov; 241():118412. PubMed ID: 34298085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AICHA: An atlas of intrinsic connectivity of homotopic areas.
    Joliot M; Jobard G; Naveau M; Delcroix N; Petit L; Zago L; Crivello F; Mellet E; Mazoyer B; Tzourio-Mazoyer N
    J Neurosci Methods; 2015 Oct; 254():46-59. PubMed ID: 26213217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new neonatal cortical and subcortical brain atlas: the Melbourne Children's Regional Infant Brain (M-CRIB) atlas.
    Alexander B; Murray AL; Loh WY; Matthews LG; Adamson C; Beare R; Chen J; Kelly CE; Rees S; Warfield SK; Anderson PJ; Doyle LW; Spittle AJ; Cheong JLY; Seal ML; Thompson DK
    Neuroimage; 2017 Feb; 147():841-851. PubMed ID: 27725314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures.
    Lim IA; Faria AV; Li X; Hsu JT; Airan RD; Mori S; van Zijl PC
    Neuroimage; 2013 Nov; 82():449-69. PubMed ID: 23769915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using connectomics for predictive assessment of brain parcellations.
    Albers KJ; Ambrosen KS; Liptrot MG; Dyrby TB; Schmidt MN; Mørup M
    Neuroimage; 2021 Sep; 238():118170. PubMed ID: 34087365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fetal cortical surface atlas parcellation based on growth patterns.
    Xia J; Wang F; Benkarim OM; Sanroma G; Piella G; González Ballester MA; Hahner N; Eixarch E; Zhang C; Shen D; Li G
    Hum Brain Mapp; 2019 Sep; 40(13):3881-3899. PubMed ID: 31106942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereotaxic Magnetic Resonance Imaging Brain Atlases for Infants from 3 to 12 Months.
    Fillmore PT; Richards JE; Phillips-Meek MC; Cryer A; Stevens M
    Dev Neurosci; 2015; 37(6):515-32. PubMed ID: 26440296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.