These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36516660)

  • 1. Internal standard metabolites for estimating origin blood volume of bloodstains.
    Lee S; Lee YR; Lee J; Kang HG
    Forensic Sci Int; 2023 Jan; 342():111533. PubMed ID: 36516660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and validation of metabolite markers in bloodstains for bloodstain age estimation.
    Lee S; Lee YR; Lee J; Kang HG
    Analyst; 2023 Aug; 148(17):4180-4188. PubMed ID: 37526270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bloodstain Metabolite Markers: Discovery and Validation for Estimating Age of Bloodstain within 7 Days.
    Lee YR; Lee S; Kwon S; Lee J; Kang HG
    Anal Chem; 2022 Oct; 94(39):13377-13384. PubMed ID: 36125254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal standard metabolites for obtaining absolute quantitative information on the components of bloodstains by standardization of samples.
    Lee YR; Lee J; Seok AE; Kim HJ; Lee YJ; Ihm C; Sung HJ; Hyun SH; Kang HG
    Forensic Sci Int; 2019 Jan; 294():69-75. PubMed ID: 30469133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of the Metabolite Ergothioneine as a Forensic Marker in Bloodstains.
    Lee S; Mun S; Lee YR; Lee J; Kang HG
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical profilometry for forensic bloodstain imaging.
    Vale B; Orr A; Elliott C; Stotesbury T
    Microsc Res Tech; 2023 Oct; 86(10):1401-1408. PubMed ID: 37133225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can scene bloodstains be used to quantify drug concentration at the moment of injury?
    Adamowicz P; Ziora B
    Forensic Sci Int; 2022 Dec; 341():111498. PubMed ID: 36270042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bloodstain examination and DNA typing from hand-washed bloodstains on clothes.
    Nakanishi H; Ohmori T; Yoneyama K; Hara M; Takada A; Saito K
    Leg Med (Tokyo); 2020 Nov; 47():101758. PubMed ID: 32702606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining how diluted bloodstains were derived: Inferring distinctive characteristics and formulating a guideline.
    van den Berge M; de Vries FG; van der Scheer M; Sijen T; Meijrink L
    Forensic Sci Int; 2019 Sep; 302():109918. PubMed ID: 31421437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Raman "spectroscopic clock" for bloodstain age determination: the first week after deposition.
    Doty KC; McLaughlin G; Lednev IK
    Anal Bioanal Chem; 2016 Jun; 408(15):3993-4001. PubMed ID: 27007735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of environmental conditions on bloodstain metabolite analysis.
    Lee YR; Lee S; Kwon S; Lee J; Kang HG
    Environ Res; 2023 Jan; 216(Pt 3):114743. PubMed ID: 36356665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating bloodstain age in the short term based on DNA fragment length using nanopore sequencer.
    Nakanishi H; Takada A; Yoneyama K; Hara M; Sakai K; Saito K
    Forensic Sci Int; 2024 May; 358():112010. PubMed ID: 38581825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman Spectroscopy for the Time since Deposition Estimation of a Menstrual Bloodstain.
    Weber A; Wójtowicz A; Wietecha-Posłuszny R; Lednev IK
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of a random forest regression model to estimate the age of bloodstains based on temporal colorimetric analysis.
    Seki T; Hsiao YY; Ishizawa F; Sugano Y; Takahashi Y
    Leg Med (Tokyo); 2024 Jul; 69():102343. PubMed ID: 37923590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemoglobin subunit beta protein as a novel marker for time since deposition of bloodstains at crime scenes.
    Heo TM; Gwon SY; Yang JH; Hyun SH; Kang HG; Sung HJ
    Forensic Sci Int; 2022 Jul; 336():111348. PubMed ID: 35635979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bloodstain pattern analysis: ballistic reconstruction of the trajectories of blood drops and determination of the centres of origin of the bloodstains.
    Buck U; Kneubuehl B; Näther S; Albertini N; Schmidt L; Thali M
    Forensic Sci Int; 2011 Mar; 206(1-3):22-8. PubMed ID: 20598820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of bloodstain deposition time within a 24-h day-night cycle with rhythmic mRNA based on a machine learning algorithm.
    Cheng F; Li W; Ji Z; Li J; Hu W; Zhao M; Yu D; Simayijiang H; Yan J
    Forensic Sci Int Genet; 2023 Sep; 66():102910. PubMed ID: 37406538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental study of the identification of the person of origin of a bloodstain by crossed immunoelectrophoresis.
    Kashimura S; Umetsu K; Suzuki T
    Forensic Sci Int; 1984 Jun; 25(2):147-54. PubMed ID: 6735292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age estimation of bloodstains based on Raman spectroscopy and chemometrics.
    Zhang R; Wang P; Chen J; Tian Y; Gao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122284. PubMed ID: 36592590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical evaluation of alternative light sources for bloodstain photography.
    Lee WC; Khoo BE; Bin Abdullah AF; Abdul Aziz ZB
    J Forensic Sci; 2013 May; 58(3):658-63. PubMed ID: 23488634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.