BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36516708)

  • 1. Injection strategy for effective bacterial delivery in bioaugmentation scheme by controlling ionic strength and pore-water velocity.
    Kwak E; Kim JH; Choi JW; Lee S
    J Environ Manage; 2023 Feb; 328():116971. PubMed ID: 36516708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity.
    Compère F; Porel G; Delay F
    J Contam Hydrol; 2001 May; 49(1-2):1-21. PubMed ID: 11351511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of bacterial mass recovery as a function of pore-water velocity and ionic strength.
    Choi NC; Kim DJ; Kim SB
    Res Microbiol; 2007; 158(1):70-8. PubMed ID: 17125973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-SiO
    Ghosh D; Das S; Gahlot VK; Pulimi M; Anand S; Chandrasekaran N; Rai PK; Mukherjee A
    J Contam Hydrol; 2022 Jun; 248():104029. PubMed ID: 35653834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of biofilm on the transport and deposition behaviors of nano- and micro-plastic particles in quartz sand.
    He L; Rong H; Wu D; Li M; Wang C; Tong M
    Water Res; 2020 Jul; 178():115808. PubMed ID: 32371288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
    Flury M; Czigány S; Chen G; Harsh JB
    J Contam Hydrol; 2004 Jul; 71(1-4):111-26. PubMed ID: 15145564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport characteristics of DNA-tagged silica colloids as a colloidal tracer in saturated sand columns; role of solution chemistry, flow velocity, and sand grain size.
    Kianfar B; Tian J; Rozemeijer J; van der Zaan B; Bogaard TA; Foppen JW
    J Contam Hydrol; 2022 Apr; 246():103954. PubMed ID: 35114497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and retention of functionalized graphene oxide nanoparticles in saturated/unsaturated porous media: Effects of flow velocity, ionic strength and initial particle concentration.
    Shahi M; Alavi Moghaddam MR; Hosseini SM; Hashemi H; Persson M; Kowsari E
    Chemosphere; 2024 Apr; 354():141714. PubMed ID: 38521106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age.
    Mitzel MR; Tufenkji N
    Environ Sci Technol; 2014; 48(5):2715-23. PubMed ID: 24552618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different electrically charged proteins result in diverse bacterial transport behaviors in porous media.
    Wu D; He L; Ge Z; Tong M; Kim H
    Water Res; 2018 Oct; 143():425-435. PubMed ID: 29986251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces.
    Bolster CH; Mills AL; Hornberger GM; Herman JS
    J Contam Hydrol; 2001 Aug; 50(3-4):287-305. PubMed ID: 11523329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of citrate-coated silver nanoparticles in saturated porous media.
    Lim M; Hwang G; Bae S; Jang MH; Choi S; Kim H; Hwang YS
    Environ Geochem Health; 2020 Jun; 42(6):1753-1766. PubMed ID: 31506875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural attenuation method for contaminant remediation reagent delivery assessment for in situ chemical oxidation using aqueous ozone.
    Khan NA; Carroll KC
    Chemosphere; 2020 May; 247():125848. PubMed ID: 31958648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility.
    Jaisi DP; Saleh NB; Blake RE; Elimelech M
    Environ Sci Technol; 2008 Nov; 42(22):8317-23. PubMed ID: 19068812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-thaw cycles induce diverse bacteria release behaviors from quartz sand columns with different water saturations.
    He L; Li M; Wu D; Guo J; Zhang M; Tong M
    Water Res; 2022 Aug; 221():118683. PubMed ID: 35716413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent agglomeration and straining govern the transport of
    Su Y; Gao B; Mao L
    Water Res; 2017 May; 115():84-93. PubMed ID: 28259817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.