BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36516849)

  • 1. EstG is a novel esterase required for cell envelope integrity in Caulobacter.
    Daitch AK; Orsburn BC; Chen Z; Alvarez L; Eberhard CD; Sundararajan K; Zeinert R; Kreitler DF; Jakoncic J; Chien P; Cava F; Gabelli SB; Goley ED
    Curr Biol; 2023 Jan; 33(2):228-240.e7. PubMed ID: 36516849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OpgH is an essential regulator of
    Daitch AK; Goley ED
    bioRxiv; 2023 Aug; ():. PubMed ID: 37693447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of Bacterial Cell Pole Stabilization in Caulobacter crescentus Sensitizes to Outer Membrane Stress and Peptidoglycan-Directed Antibiotics.
    Vallet SU; Hansen LH; Bistrup FC; Laursen SA; Chapalay JB; Chambon M; Turcatti G; Viollier PH; Kirkpatrick CL
    mBio; 2020 May; 11(3):. PubMed ID: 32371598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FtsA Regulates Z-Ring Morphology and Cell Wall Metabolism in an FtsZ C-Terminal Linker-Dependent Manner in Caulobacter crescentus.
    Barrows JM; Sundararajan K; Bhargava A; Goley ED
    J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31932314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic profiling of the surface-exposed cell envelope proteins of Caulobacter crescentus.
    Cao Y; Bazemore-Walker CR
    J Proteomics; 2014 Jan; 97():187-94. PubMed ID: 23973469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caulobacter crescentus Adapts to Phosphate Starvation by Synthesizing Anionic Glycoglycerolipids and a Novel Glycosphingolipid.
    Stankeviciute G; Guan Z; Goldfine H; Klein EA
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940701
    [No Abstract]   [Full Text] [Related]  

  • 7. A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope.
    Cho SH; Parsonage D; Thurston C; Dutton RJ; Poole LB; Collet JF; Beckwith J
    mBio; 2012; 3(2):. PubMed ID: 22493033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multiprotein Complex Anchors Adhesive Holdfast at the Outer Membrane of Caulobacter crescentus.
    Sulkowski NI; Hardy GG; Brun YV; Bharat TAM
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31061167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new factor stimulating peptidoglycan hydrolysis to separate daughter cells in Caulobacter crescentus.
    Collier J
    Mol Microbiol; 2010 Jul; 77(1):11-4. PubMed ID: 20497501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus.
    Möll A; Schlimpert S; Briegel A; Jensen GJ; Thanbichler M
    Mol Microbiol; 2010 Jul; 77(1):90-107. PubMed ID: 20497502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus.
    Meier EL; Razavi S; Inoue T; Goley ED
    Mol Microbiol; 2016 Jul; 101(2):265-80. PubMed ID: 27028265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus.
    Stein BJ; Fiebig A; Crosson S
    J Bacteriol; 2021 Aug; 203(17):e0019921. PubMed ID: 34124942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter.
    Goley ED; Comolli LR; Fero KE; Downing KH; Shapiro L
    Mol Microbiol; 2010 Jul; 77(1):56-73. PubMed ID: 20497504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus.
    Woldemeskel SA; Goley ED
    Trends Microbiol; 2017 Aug; 25(8):673-687. PubMed ID: 28359631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus.
    Billini M; Biboy J; Kühn J; Vollmer W; Thanbichler M
    PLoS Genet; 2019 Feb; 15(2):e1007897. PubMed ID: 30707707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in Sugar-Nucleotide Synthesis Genes Restore Holdfast Polysaccharide Anchoring to Caulobacter crescentus Holdfast Anchor Mutants.
    Hardy GG; Toh E; Berne C; Brun YV
    J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29158242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Roles of the Two-Component System, MtrAB, in Response to Diverse Cell Envelope Stresses in
    Qin X; Zhang K; Nie Y; Wu XL
    Appl Environ Microbiol; 2022 Oct; 88(20):e0133722. PubMed ID: 36190258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine-Tuning of the Cpx Envelope Stress Response Is Required for Cell Wall Homeostasis in Escherichia coli.
    Delhaye A; Collet JF; Laloux G
    mBio; 2016 Feb; 7(1):e00047-16. PubMed ID: 26908573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse functions for six glycosyltransferases in Caulobacter crescentus cell wall assembly.
    Yakhnina AA; Gitai Z
    J Bacteriol; 2013 Oct; 195(19):4527-35. PubMed ID: 23935048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus.
    Lubin EA; Henry JT; Fiebig A; Crosson S; Laub MT
    J Bacteriol; 2016 Jan; 198(1):187-200. PubMed ID: 26483520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.