These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36516944)

  • 1. Integrating machine learning predictions for perioperative risk management: Towards an empirical design of a flexible-standardized risk assessment tool.
    Abraham J; Bartek B; Meng A; Ryan King C; Xue B; Lu C; Avidan MS
    J Biomed Inform; 2023 Jan; 137():104270. PubMed ID: 36516944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A qualitative research framework for the design of user-centered displays of explanations for machine learning model predictions in healthcare.
    Barda AJ; Horvat CM; Hochheiser H
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):257. PubMed ID: 33032582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. User-Centered Design of a Machine Learning Dashboard for Prediction of Postoperative Complications.
    Fritz BA; Pugazenthi S; Budelier TP; Tellor Pennington BR; King CR; Avidan MS; Abraham J
    Anesth Analg; 2024 Apr; 138(4):804-813. PubMed ID: 37339083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Needs Assessment of a Machine Learning-Based Asthma Management Tool: User-Centered Design Approach.
    Zheng L; Ohde JW; Overgaard SM; Brereton TA; Jose K; Wi CI; Peterson KJ; Juhn YJ
    JMIR Form Res; 2024 Jan; 8():e45391. PubMed ID: 38224482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications.
    Xue B; Li D; Lu C; King CR; Wildes T; Avidan MS; Kannampallil T; Abraham J
    JAMA Netw Open; 2021 Mar; 4(3):e212240. PubMed ID: 33783520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptions about the relative importance of patient care-related topics: a single institutional survey of its anesthesiologists, nurse anesthetists, and surgeons.
    Vetter TR; Barman J; Boudreaux AM; Jones KA
    BMC Anesthesiol; 2016 Mar; 16():19. PubMed ID: 27004520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and development of a machine-learning-driven opioid overdose risk prediction tool integrated in electronic health records in primary care settings.
    Nguyen K; Wilson DL; Diiulio J; Hall B; Militello L; Gellad WF; Harle CA; Lewis M; Schmidt S; Rosenberg EI; Nelson D; He X; Wu Y; Bian J; Staras SAS; Gordon AJ; Cochran J; Kuza C; Yang S; Lo-Ciganic W
    Bioelectron Med; 2024 Oct; 10(1):24. PubMed ID: 39420438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraoperative prediction of postanaesthesia care unit hypotension.
    Palla K; Hyland SL; Posner K; Ghosh P; Nair B; Bristow M; Paleva Y; Williams B; Fong C; Van Cleve W; Long DR; Pauldine R; O'Hara K; Takeda K; Vavilala MS
    Br J Anaesth; 2022 Apr; 128(4):623-635. PubMed ID: 34924175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of machine learning models on clinician prediction of postoperative complications: the Perioperative ORACLE randomised clinical trial.
    Fritz BA; King CR; Abdelhack M; Chen Y; Kronzer A; Abraham J; Tripathi S; Ben Abdallah A; Kannampallil T; Budelier TP; Helsten D; Montes de Oca A; Mehta D; Sontha P; Higo O; Kerby P; Gregory SH; Wildes TS; Avidan MS
    Br J Anaesth; 2024 Nov; 133(5):1042-1050. PubMed ID: 39261226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Machine Learning in Predicting Perioperative Outcomes in Patients with Cancer: A Narrative Review for Clinicians.
    Brydges G; Uppal A; Gottumukkala V
    Curr Oncol; 2024 May; 31(5):2727-2747. PubMed ID: 38785488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Explainable Machine Learning in Clinical Decision Support Systems: Study Involving a Modified Design Thinking Approach.
    Shulha M; Hovdebo J; D'Souza V; Thibault F; Harmouche R
    JMIR Form Res; 2024 Apr; 8():e50475. PubMed ID: 38625728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascertaining Design Requirements for Postoperative Care Transition Interventions.
    Abraham J; King CR; Meng A
    Appl Clin Inform; 2021 Jan; 12(1):107-115. PubMed ID: 33626584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Evaluation of an Intensive Care Unit Dashboard Built in Response to the COVID-19 Pandemic: Semistructured Interview Study.
    Wac M; Craddock I; Chantziara S; Campbell T; Santos-Rodriguez R; Davidson B; McWilliams C
    JMIR Hum Factors; 2023 Sep; 10():e49438. PubMed ID: 37751239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Mobile App That Addresses Interpretability Challenges in Machine Learning-Based Diabetes Predictions: Survey-Based User Study.
    Hendawi R; Li J; Roy S
    JMIR Form Res; 2023 Nov; 7():e50328. PubMed ID: 37955948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Perioperative Medication-Related Clinical Decision Support Tool to Prevent Medication Errors: An Analysis of User Feedback.
    Nanji KC; Garabedian PM; Shaikh SD; Langlieb ME; Boxwala A; Gordon WJ; Bates DW
    Appl Clin Inform; 2021 Oct; 12(5):984-995. PubMed ID: 34820790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential uses of AI for perioperative nursing handoffs: a qualitative study.
    King CR; Shambe A; Abraham J
    JAMIA Open; 2023 Apr; 6(1):ooad015. PubMed ID: 36935899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Usability testing of Avoiding Diabetes Thru Action Plan Targeting (ADAPT) decision support for integrating care-based counseling of pre-diabetes in an electronic health record.
    Chrimes D; Kitos NR; Kushniruk A; Mann DM
    Int J Med Inform; 2014 Sep; 83(9):636-47. PubMed ID: 24981988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Clinician Decisions and Communication in Critical Care Using Novel Information Technology.
    Pamplin J; Nemeth CP; Serio-Melvin ML; Murray SJ; Rule GT; Veinott ES; Veazey SR; Hamilton AJ; Fenrich CA; Laufersweiler DE; Salinas J
    Mil Med; 2020 Feb; 185(1-2):e254-e261. PubMed ID: 31271437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvements in Patient Monitoring in the Intensive Care Unit: Survey Study.
    Poncette AS; Mosch L; Spies C; Schmieding M; Schiefenhövel F; Krampe H; Balzer F
    J Med Internet Res; 2020 Jun; 22(6):e19091. PubMed ID: 32459655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.