BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36516982)

  • 1. Redox-Controlled Energy Transfer Quenching of Fluorophore-Labeled DNA SAMs Enables In Situ Study of These Complex Electrochemical Interfaces.
    Ma T; Grzȩdowski AJ; Doneux T; Bizzotto D
    J Am Chem Soc; 2022 Dec; 144(51):23428-23437. PubMed ID: 36516982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of FRET Microscopy to the Study of the Local Environment and Dynamics of DNA SAMs on Au Electrodes.
    Verhaven A; Doneux T; Bizzotto D
    Langmuir; 2018 Dec; 34(49):14802-14810. PubMed ID: 30189138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientational control over nitrite reductase on modified gold electrode and its effects on the interfacial electron transfer.
    Krzemiński L; Cronin S; Ndamba L; Canters GW; Aartsma TJ; Evans SD; Jeuken LJ
    J Phys Chem B; 2011 Nov; 115(43):12607-14. PubMed ID: 21939276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes.
    Kékedy-Nagy L; Shipovskov S; Ferapontova EE
    Anal Chem; 2016 Aug; 88(16):7984-90. PubMed ID: 27441419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET Imaging of Nonuniformly Distributed DNA SAMs on Gold Reveals the Role Played by the Donor/Acceptor Ratio and the Local Environment in Measuring the Rate of Hybridization.
    Grzędowski AJ; Ma T; Bizzotto D
    Chem Biomed Imaging; 2023 Jun; 1(3):286-296. PubMed ID: 37388962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.
    Farjami E; Clima L; Gothelf KV; Ferapontova EE
    Analyst; 2010 Jun; 135(6):1443-8. PubMed ID: 20369213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of surface structure on single or mixed component self-assembled monolayers via in situ spectroelectrochemical fluorescence imaging of the complete stereographic triangle on a single crystal Au bead electrode.
    Yu ZL; Casanova-Moreno J; Guryanov I; Maran F; Bizzotto D
    J Am Chem Soc; 2015 Jan; 137(1):276-88. PubMed ID: 25495479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Thermal Stability and Homogeneity of Low Probe Density DNA SAMs Using Potential-Assisted Thiol-Exchange Assembly Methods.
    Ma T; Bizzotto D
    Anal Chem; 2021 Dec; 93(48):15973-15981. PubMed ID: 34813297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical properties of DNA-intercalating doxorubicin and methylene blue on n-hexadecyl mercaptan-doped 5'-thiol-labeled DNA-modified gold electrodes.
    Yau HC; Chan HL; Yang M
    Biosens Bioelectron; 2003 Jul; 18(7):873-9. PubMed ID: 12713910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity.
    González-Fernández E; Avlonitis N; Murray AF; Mount AR; Bradley M
    Biosens Bioelectron; 2016 Oct; 84():82-8. PubMed ID: 26684247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the nature of DNA self-assembled monolayers on Au: measuring surface heterogeneity with electrochemical in situ fluorescence microscopy.
    Murphy JN; Cheng AK; Yu HZ; Bizzotto D
    J Am Chem Soc; 2009 Mar; 131(11):4042-50. PubMed ID: 19254024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21.
    Rafiee-Pour HA; Behpour M; Keshavarz M
    Biosens Bioelectron; 2016 Mar; 77():202-7. PubMed ID: 26409019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of Redox-Active Moieties for Application in Multiplexed Electrochemical Biosensors.
    Kang D; Ricci F; White RJ; Plaxco KW
    Anal Chem; 2016 Nov; 88(21):10452-10458. PubMed ID: 27659949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor.
    Gao F; Du L; Zhang Y; Tang D; Du Y
    Anal Chim Acta; 2015 Jul; 883():67-73. PubMed ID: 26088778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An amplified electrochemical proximity immunoassay for the total protein of Nosema bombycis based on the catalytic activity of Fe3O4NPs towards methylene blue.
    Wang Q; Gan X; Zang R; Chai Y; Yuan Y; Yuan R
    Biosens Bioelectron; 2016 Jul; 81():382-387. PubMed ID: 26994365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-Active Monolayers Self-Assembled on Gold Electrodes-Effect of Their Structures on Electrochemical Parameters and DNA Sensing Ability.
    Malecka K; Menon S; Palla G; Kumar KG; Daniels M; Dehaen W; Radecka H; Radecki J
    Molecules; 2020 Jan; 25(3):. PubMed ID: 32019203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding- and Dynamics-Based Electrochemical DNA Sensors.
    Lai RY
    Methods Enzymol; 2017; 589():221-252. PubMed ID: 28336065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: characterization by XPS, NEXAFS, and fluorescence intensity measurements.
    Lee CY; Gong P; Harbers GM; Grainger DW; Castner DG; Gamble LJ
    Anal Chem; 2006 May; 78(10):3316-25. PubMed ID: 16689532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence imaging of the oxidative desorption of a BODIPY-alkyl-thiol monolayer coated Au bead.
    Musgrove A; Kell A; Bizzotto D
    Langmuir; 2008 Aug; 24(15):7881-8. PubMed ID: 18572885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal-on electrochemical Y or junction probe detection of nucleic acid.
    Shen Z; Nakayama S; Semancik S; Sintim HO
    Chem Commun (Camb); 2012 Aug; 48(61):7580-2. PubMed ID: 22735181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.