These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36517714)

  • 1. Wetland emission and atmospheric sink changes explain methane growth in 2020.
    Peng S; Lin X; Thompson RL; Xi Y; Liu G; Hauglustaine D; Lan X; Poulter B; Ramonet M; Saunois M; Yin Y; Zhang Z; Zheng B; Ciais P
    Nature; 2022 Dec; 612(7940):477-482. PubMed ID: 36517714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preindustrial
    Hmiel B; Petrenko VV; Dyonisius MN; Buizert C; Smith AM; Place PF; Harth C; Beaudette R; Hua Q; Yang B; Vimont I; Michel SE; Severinghaus JP; Etheridge D; Bromley T; Schmitt J; Faïn X; Weiss RF; Dlugokencky E
    Nature; 2020 Feb; 578(7795):409-412. PubMed ID: 32076219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the impact of soil methane sink on atmospheric methane concentrations in 2020.
    Zhou X; Xiao W; Cheng L; Smaill SJ; Peng S
    Glob Chang Biol; 2024 Jun; 30(6):e17381. PubMed ID: 38923235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O
    Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term decline of global atmospheric ethane concentrations and implications for methane.
    Simpson IJ; Sulbaek Andersen MP; Meinardi S; Bruhwiler L; Blake NJ; Helmig D; Rowland FS; Blake DR
    Nature; 2012 Aug; 488(7412):490-4. PubMed ID: 22914166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska.
    Lyu Z; Genet H; He Y; Zhuang Q; McGuire AD; Bennett A; Breen A; Clein J; Euskirchen ES; Johnson K; Kurkowski T; Pastick NJ; Rupp TS; Wylie BK; Zhu Z
    Ecol Appl; 2018 Sep; 28(6):1377-1395. PubMed ID: 29808543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interannual variation in methane emissions from tropical wetlands triggered by repeated El Niño Southern Oscillation.
    Zhu Q; Peng C; Ciais P; Jiang H; Liu J; Bousquet P; Li S; Chang J; Fang X; Zhou X; Chen H; Liu S; Lin G; Gong P; Wang M; Wang H; Xiang W; Chen J
    Glob Chang Biol; 2017 Nov; 23(11):4706-4716. PubMed ID: 28418083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large emissions from floodplain trees close the Amazon methane budget.
    Pangala SR; Enrich-Prast A; Basso LS; Peixoto RB; Bastviken D; Hornibrook ERC; Gatti LV; Marotta H; Calazans LSB; Sakuragui CM; Bastos WR; Malm O; Gloor E; Miller JB; Gauci V
    Nature; 2017 Dec; 552(7684):230-234. PubMed ID: 29211724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event.
    Petrenko VV; Smith AM; Schaefer H; Riedel K; Brook E; Baggenstos D; Harth C; Hua Q; Buizert C; Schilt A; Fain X; Mitchell L; Bauska T; Orsi A; Weiss RF; Severinghaus JP
    Nature; 2017 Aug; 548(7668):443-446. PubMed ID: 28836593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane Emissions from Wetlands in China and Their Climate Feedbacks in the 21st Century.
    Li T; Canadell JG; Yang XQ; Zhai P; Chao Q; Lu Y; Huang D; Sun W; Qin Z
    Environ Sci Technol; 2022 Sep; 56(17):12024-12035. PubMed ID: 35943239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthropogenic emission is the main contributor to the rise of atmospheric methane during 1993-2017.
    Zhang Z; Poulter B; Knox S; Stavert A; McNicol G; Fluet-Chouinard E; Feinberg A; Zhao Y; Bousquet P; Canadell JG; Ganesan A; Hugelius G; Hurtt G; Jackson RB; Patra PK; Saunois M; Höglund-Isaksson L; Huang C; Chatterjee A; Li X
    Natl Sci Rev; 2022 May; 9(5):nwab200. PubMed ID: 35547958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane emissions from rice paddies natural wetlands, and lakes in China: synthesis and new estimate.
    Chen H; Zhu Q; Peng C; Wu N; Wang Y; Fang X; Jiang H; Xiang W; Chang J; Deng X; Yu G
    Glob Chang Biol; 2013 Jan; 19(1):19-32. PubMed ID: 23504718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of anthropogenic and natural sources to atmospheric methane variability.
    Bousquet P; Ciais P; Miller JB; Dlugokencky EJ; Hauglustaine DA; Prigent C; Van der Werf GR; Peylin P; Brunke EG; Carouge C; Langenfelds RL; Lathière J; Papa F; Ramonet M; Schmidt M; Steele LP; Tyler SC; White J
    Nature; 2006 Sep; 443(7110):439-43. PubMed ID: 17006511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flux estimates from soil methanogenesis and methanotrophy: Landfills, rice paddies, natural wetlands and aerobic soils.
    Boeckx P; Van Cleemput O
    Environ Monit Assess; 1996 Sep; 42(1-2):189-207. PubMed ID: 24193501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction CH4 Emissions from the Wetlands in the Sanjiang Plain of Northeastern China in the 21st Century.
    Li T; Zhang Q; Zhang W; Wang G; Lu Y; Yu L; Zhang R
    PLoS One; 2016; 11(7):e0158872. PubMed ID: 27409586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging role of wetland methane emissions in driving 21st century climate change.
    Zhang Z; Zimmermann NE; Stenke A; Li X; Hodson EL; Zhu G; Huang C; Poulter B
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9647-9652. PubMed ID: 28827347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying Methane and Ozone Precursor Emissions from Oil and Gas Production Regions across the Contiguous US.
    Francoeur CB; McDonald BC; Gilman JB; Zarzana KJ; Dix B; Brown SS; de Gouw JA; Frost GJ; Li M; McKeen SA; Peischl J; Pollack IB; Ryerson TB; Thompson C; Warneke C; Trainer M
    Environ Sci Technol; 2021 Jul; 55(13):9129-9139. PubMed ID: 34161066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opposing seasonal temperature dependencies of CO
    Li J; Pei J; Fang C; Li B; Nie M
    Glob Chang Biol; 2023 Feb; 29(4):1133-1143. PubMed ID: 36385719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Constraints on Global Methane Emissions and Sinks Using
    Lan X; Basu S; Schwietzke S; Bruhwiler LMP; Dlugokencky EJ; Michel SE; Sherwood OA; Tans PP; Thoning K; Etiope G; Zhuang Q; Liu L; Oh Y; Miller JB; Pétron G; Vaughn BH; Crippa M
    Global Biogeochem Cycles; 2021 Jun; 35(6):e2021GB007000. PubMed ID: 34219915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change.
    Laughner JL; Neu JL; Schimel D; Wennberg PO; Barsanti K; Bowman KW; Chatterjee A; Croes BE; Fitzmaurice HL; Henze DK; Kim J; Kort EA; Liu Z; Miyazaki K; Turner AJ; Anenberg S; Avise J; Cao H; Crisp D; de Gouw J; Eldering A; Fyfe JC; Goldberg DL; Gurney KR; Hasheminassab S; Hopkins F; Ivey CE; Jones DBA; Liu J; Lovenduski NS; Martin RV; McKinley GA; Ott L; Poulter B; Ru M; Sander SP; Swart N; Yung YL; Zeng ZC
    Proc Natl Acad Sci U S A; 2021 Nov; 118(46):. PubMed ID: 34753820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.