These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36518625)

  • 41. Predicting the Distribution of
    Gao H; Qian Q; Liu L; Xu D
    Insects; 2023 May; 14(5):. PubMed ID: 37233103
    [No Abstract]   [Full Text] [Related]  

  • 42. [Responses of potential suitable area of Paris verticillata to climate change and its dominant climate factors].
    Ji LT; Zheng TY; Chen Q; Zhong JJ; Kang B
    Ying Yong Sheng Tai Xue Bao; 2020 Jan; 31(1):89-96. PubMed ID: 31957384
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Potential geographical distribution of Pyrus calleryana under different climate change scena-rios based on the MaxEnt model].
    Liu C; Huo HL; Tian LM; Dong XG; Qi D; Zhang Y; Xu JY; Cao YF
    Ying Yong Sheng Tai Xue Bao; 2018 Nov; 29(11):3696-3704. PubMed ID: 30460817
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reliable and rapid identification of glyphosate-resistance in the invasive weed Amaranthus palmeri in China.
    Cao J; Wu Q; Wan F; Guo J; Wang R
    Pest Manag Sci; 2022 Jun; 78(6):2173-2182. PubMed ID: 35191163
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting the habitat distribution of rubber plantations with topography, soil, land use, and climatic factors.
    Selvalakshmi S; Kalarikkal RK; Yang X
    Environ Monit Assess; 2020 Aug; 192(9):598. PubMed ID: 32840701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Climate Change on the Potentially Suitable Distribution Pattern of
    Shen L; Deng H; Zhang G; Ma A; Mo X
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840065
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Prediction of potential distribution of the invasive species Procambarus clarkii in China based on ecological niche models].
    Xiao Q; Zhang MT; Wu Y; Ding H; Lei JC; Zhu SL; Zhang ZH; Chen L
    Ying Yong Sheng Tai Xue Bao; 2020 Jan; 31(1):309-318. PubMed ID: 31957409
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Buchanania cochinchinensis (Lour.) M.R. Almedia habitat exhibited robust adaptability to diverse socioeconomic scenarios in eastern India.
    Garai S; Mishra Y; Malakar A; Kumar R; Singh R; Sharma J; Tiwari S
    Environ Monit Assess; 2023 Jul; 195(8):1005. PubMed ID: 37501039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Potential geographical distribution of
    Xia X; Li Y; Yang DD; Pi YY
    Ying Yong Sheng Tai Xue Bao; 2021 Dec; 32(12):4307-4314. PubMed ID: 34951272
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting the potential suitable habitats of genus Nymphaea in India using MaxEnt modeling.
    Parveen S; Kaur S; Baishya R; Goel S
    Environ Monit Assess; 2022 Oct; 194(12):853. PubMed ID: 36203117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting the distribution of potentially suitable habitat in China for
    Fang HQ; Jiang ZX; Chen SM; Xie T; Xue Y; Song J; Yang QS
    Ecol Evol; 2024 Jul; 14(7):e11653. PubMed ID: 38983705
    [No Abstract]   [Full Text] [Related]  

  • 52. Differences in the Suitable Distribution Area between Northern and Southern China Landscape Plants.
    Wang C; Sheng Q; Zhao R; Zhu Z
    Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514324
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Meta-analytic and MaxEnt model prediction, the distribution of the Bactrocera minax (Diptera: Tephritidae), in China under changing climate.
    Yang H; Huang X; Yang Y; Wang R; Xu D
    J Econ Entomol; 2024 Apr; 117(2):470-479. PubMed ID: 38373251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessing the suitability and dynamics of three medicinal
    Luo W; Han S; Yu T; Wang P; Ma Y; Wan M; Liu J; Li Z; Tao J
    Front Plant Sci; 2023; 14():1194444. PubMed ID: 37929169
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting the Potential Distribution of Pine Wilt Disease in China under Climate Change.
    Ouyang X; Chen A; Li Y; Han X; Lin H
    Insects; 2022 Dec; 13(12):. PubMed ID: 36555057
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Niche modeling for the genus
    Rej JE; Joyner TA
    PeerJ; 2018; 6():e6128. PubMed ID: 30588407
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential geographic distribution of relict plant Pteroceltis tatarinowii in China under climate change scenarios.
    Yang J; Jiang P; Huang Y; Yang Y; Wang R; Yang Y
    PLoS One; 2022; 17(4):e0266133. PubMed ID: 35395025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: implications for environmental monitoring and risk assessment.
    Heshmati I; Khorasani N; Shams-Esfandabad B; Riazi B
    Environ Monit Assess; 2019 Jan; 191(2):72. PubMed ID: 30648210
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of climate-change scenarios on the distribution patterns of
    Xie C; Tian E; Jim CY; Liu D; Hu Z
    Ecol Evol; 2022 Dec; 12(12):e9597. PubMed ID: 36514555
    [No Abstract]   [Full Text] [Related]  

  • 60. Forecasting shifts in habitat suitability of three marine predators suggests a rapid decline in inter-specific overlap under future climate change.
    van Beest FM; Dietz R; Galatius A; Kyhn LA; Sveegaard S; Teilmann J
    Ecol Evol; 2022 Jul; 12(7):e9083. PubMed ID: 35813921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.