These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36518625)

  • 61. Predicting the current and future suitable distribution range of
    Qian Q; Xu D; Liao W; Zhuo Z
    Bull Entomol Res; 2024 May; ():1-10. PubMed ID: 38699862
    [No Abstract]   [Full Text] [Related]  

  • 62. Predictive Modeling of Suitable Habitats for
    Zhang L; Jing Z; Li Z; Liu Y; Fang S
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31480473
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Global distribution of soapberries (Sapindus L.) habitats under current and future climate scenarios.
    Liu J; Wang L; Sun C; Xi B; Li D; Chen Z; He Q; Weng X; Jia L
    Sci Rep; 2021 Oct; 11(1):19740. PubMed ID: 34611181
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Prediction of potential distribution of Carpinus cordata in China under climate change.].
    Zhao RN; He QQ; Chu XJ; Lu ZQ; Zhu ZL
    Ying Yong Sheng Tai Xue Bao; 2019 Nov; 30(11):3833-3843. PubMed ID: 31833697
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Prediction of the potentially suitable areas of
    Wang Y; Xie L; Zhou X; Chen R; Zhao G; Zhang F
    Ecol Evol; 2023 Oct; 13(10):e10597. PubMed ID: 37869439
    [No Abstract]   [Full Text] [Related]  

  • 66. Maximum Entropy Modeling to Predict the Impact of Climate Change on Pine Wilt Disease in China.
    Tang X; Yuan Y; Li X; Zhang J
    Front Plant Sci; 2021; 12():652500. PubMed ID: 33968109
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Prediction of Spatiotemporal Invasive Risk of the Red Import Fire Ant,
    Song J; Zhang H; Li M; Han W; Yin Y; Lei J
    Insects; 2021 Sep; 12(10):. PubMed ID: 34680643
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The potential habitat of desert locusts is contracting: predictions under climate change scenarios.
    Guan J; Li M; Ju X; Lin J; Wu J; Zheng J
    PeerJ; 2021; 9():e12311. PubMed ID: 34754618
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Predicting the Potential Distribution of Polygala tenuifolia Willd. under Climate Change in China.
    Jiang H; Liu T; Li L; Zhao Y; Pei L; Zhao J
    PLoS One; 2016; 11(9):e0163718. PubMed ID: 27661983
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent.
    Kong F; Tang L; He H; Yang F; Tao J; Wang W
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):34655-34663. PubMed ID: 33655479
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Projected Impacts of Climate Change on the Range Expansion of the Invasive Straggler Daisy (
    Lal R; Chauhan S; Kaur A; Jaryan V; Kohli RK; Singh R; Singh HP; Kaur S; Batish DR
    Plants (Basel); 2023 Dec; 13(1):. PubMed ID: 38202376
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Global Potential Distribution of Invasive Species
    Wei J; Niu M; Zhang H; Cai B; Ji W
    Insects; 2024 Mar; 15(3):. PubMed ID: 38535390
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Climatic ecological suitability and potential distribution of
    Wang QL; Wang RL; Zhang LP; Han YJ; Wang MT; Chen H; Chen J; Guo B
    Ying Yong Sheng Tai Xue Bao; 2021 Jul; 32(7):2525-2533. PubMed ID: 34313071
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Predictions Based on Different Climate Change Scenarios: The Habitat of Typical Locust Species Is Shrinking in Kazakhstan and Xinjiang, China.
    Wu R; Guan JY; Wu JG; Ju XF; An QH; Zheng JH
    Insects; 2022 Oct; 13(10):. PubMed ID: 36292890
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Climate change impacts on optimal habitat of Stachys inflata medicinal plant in central Iran.
    Shaban M; Ghehsareh Ardestani E; Ebrahimi A; Borhani M
    Sci Rep; 2023 Apr; 13(1):6580. PubMed ID: 37085511
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spatiotemporal dynamics of habitat suitability for the Ethiopian staple crop,
    Zewudie D; Ding W; Rong Z; Zhao C; Chang Y
    PeerJ; 2021; 9():e10965. PubMed ID: 33828911
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Simulation of the potential distribution of rare and endangered
    Ouyang X; Bai S; Strachan GB; Chen A
    Ecol Evol; 2022 Jul; 12(7):e9054. PubMed ID: 35845387
    [No Abstract]   [Full Text] [Related]  

  • 78. Impacts of climate change on the geographic distribution of African oak tree (
    Balima LH; Nacoulma BMI; Da SS; Ouédraogo A; Soro D; Thiombiano A
    Heliyon; 2022 Jan; 8(1):e08688. PubMed ID: 35028465
    [No Abstract]   [Full Text] [Related]  

  • 79. Musk deer (Moschus spp.) face redistribution to higher elevations and latitudes under climate change in China.
    Jiang F; Zhang J; Gao H; Cai Z; Zhou X; Li S; Zhang T
    Sci Total Environ; 2020 Feb; 704():135335. PubMed ID: 31784177
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Confirmation of herbicide resistance mutations Trp574Leu, ΔG210, and EPSPS gene amplification and control of multiple herbicide-resistant Palmer amaranth (Amaranthus palmeri) with chlorimuron-ethyl, fomesafen, and glyphosate.
    Spaunhorst DJ; Nie H; Todd JR; Young JM; Young BG; Johnson WG
    PLoS One; 2019; 14(3):e0214458. PubMed ID: 30913269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.