These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 36519229)
41. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. Ferronato N; Rada EC; Gorritty Portillo MA; Cioca LI; Ragazzi M; Torretta V J Environ Manage; 2019 Jan; 230():366-378. PubMed ID: 30293021 [TBL] [Abstract][Full Text] [Related]
42. Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: Review. Singh R; Paritosh K; Pareek N; Vivekanand V Bioresour Technol; 2022 Sep; 360():127596. PubMed ID: 35809870 [TBL] [Abstract][Full Text] [Related]
43. Insect biorefinery: A circular economy concept for biowaste conversion to value-added products. Kee PE; Cheng YS; Chang JS; Yim HS; Tan JCY; Lam SS; Lan JC; Ng HS; Khoo KS Environ Res; 2023 Mar; 221():115284. PubMed ID: 36640934 [TBL] [Abstract][Full Text] [Related]
45. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. Najar IN; Sharma P; Das R; Tamang S; Mondal K; Thakur N; Gandhi SG; Kumar V J Environ Manage; 2024 Jun; 360():121136. PubMed ID: 38759555 [TBL] [Abstract][Full Text] [Related]
46. A systematic review on tannery sludge to energy route: Current practices, impacts, strategies, and future directions. Moktadir MA; Ren J; Zhou J Sci Total Environ; 2023 Nov; 901():166244. PubMed ID: 37597567 [TBL] [Abstract][Full Text] [Related]
47. Exploring the potential of vermicompost as a sustainable strategy in circular economy: improving plants' bioactive properties and boosting agricultural yield and quality. Kamar Zaman AM; Yaacob JS Environ Sci Pollut Res Int; 2022 Feb; 29(9):12948-12964. PubMed ID: 35034296 [TBL] [Abstract][Full Text] [Related]
48. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Kumar Sarangi P; Subudhi S; Bhatia L; Saha K; Mudgil D; Prasad Shadangi K; Srivastava RK; Pattnaik B; Arya RK Environ Sci Pollut Res Int; 2023 Jan; 30(4):8526-8539. PubMed ID: 35554831 [TBL] [Abstract][Full Text] [Related]
49. Biofuel supply chain management in the circular economy transition: An inclusive knowledge map of the field. Ranjbari M; Shams Esfandabadi Z; Ferraris A; Quatraro F; Rehan M; Nizami AS; Gupta VK; Lam SS; Aghbashlo M; Tabatabaei M Chemosphere; 2022 Jun; 296():133968. PubMed ID: 35181422 [TBL] [Abstract][Full Text] [Related]
50. Techno-economic and environmental sustainability of biomass waste conversion based on thermocatalytic reforming. Casson Moreno V; Iervolino G; Tugnoli A; Cozzani V Waste Manag; 2020 Jan; 101():106-115. PubMed ID: 31605925 [TBL] [Abstract][Full Text] [Related]
51. Expression of Concern: Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere; 2024 May; 356():142009. PubMed ID: 38685649 [No Abstract] [Full Text] [Related]
52. Bacillus genus industrial applications and innovation: First steps towards a circular bioeconomy. Herrmann LW; Letti LAJ; Penha RO; Soccol VT; Rodrigues C; Soccol CR Biotechnol Adv; 2024; 70():108300. PubMed ID: 38101553 [TBL] [Abstract][Full Text] [Related]
53. Wastewater recovery for sustainable agricultural systems in the circular economy - A systematic literature review of Life Cycle Assessments. Crovella T; Paiano A; Falciglia PP; Lagioia G; Ingrao C Sci Total Environ; 2024 Feb; 912():169310. PubMed ID: 38123087 [TBL] [Abstract][Full Text] [Related]
55. Valorization of Food and Agricultural Waste: A Step towards Greener Future. Rao P; Rathod V Chem Rec; 2019 Sep; 19(9):1858-1871. PubMed ID: 30511811 [TBL] [Abstract][Full Text] [Related]
56. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Jimenez-Lopez C; Fraga-Corral M; Carpena M; García-Oliveira P; Echave J; Pereira AG; Lourenço-Lopes C; Prieto MA; Simal-Gandara J Food Funct; 2020 Jun; 11(6):4853-4877. PubMed ID: 32463400 [TBL] [Abstract][Full Text] [Related]
57. Fungal biorefinery for sustainable resource recovery from waste. Chatterjee S; Venkata Mohan S Bioresour Technol; 2022 Feb; 345():126443. PubMed ID: 34852279 [TBL] [Abstract][Full Text] [Related]
58. Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Leong HY; Chang CK; Khoo KS; Chew KW; Chia SR; Lim JW; Chang JS; Show PL Biotechnol Biofuels; 2021 Apr; 14(1):87. PubMed ID: 33827663 [TBL] [Abstract][Full Text] [Related]
59. Valorization of food waste: A comprehensive review of individual technologies for producing bio-based products. Ansari SA; Kumar T; Sawarkar R; Gobade M; Khan D; Singh L J Environ Manage; 2024 Jul; 364():121439. PubMed ID: 38870792 [TBL] [Abstract][Full Text] [Related]
60. Exergy analysis of a whole-crop safflower biorefinery: A step towards reducing agricultural wastes in a sustainable manner. Khounani Z; Hosseinzadeh-Bandbafha H; Nazemi F; Shaeifi M; Karimi K; Tabatabaei M; Aghbashlo M; Lam SS J Environ Manage; 2021 Feb; 279():111822. PubMed ID: 33348185 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]