BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36519452)

  • 21. Quantitative Förster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photo-Thermo-Electric Conversion.
    Fu K; Zeng X; Zhao X; Wu Y; Li M; Li XS; Pan C; Chen Z; Yu ZQ
    Small; 2021 Oct; 17(39):e2103172. PubMed ID: 34310041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redefining the dry molten globule state of proteins.
    Neumaier S; Kiefhaber T
    J Mol Biol; 2014 Jun; 426(13):2520-8. PubMed ID: 24792909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amphiphilic diblock copolymer with dithienylethene pendants: synthesis and photo-modulated self-assembly.
    Chen Z; He Y; Wang Y; Wang X
    Macromol Rapid Commun; 2011 Jul; 32(13):977-82. PubMed ID: 21574201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual absorption spectral changes by light-triggered shuttling in bistable [2]rotaxanes with non-destructive readout.
    Zhan TG; Yun MY; Lin JL; Yu XY; Zhang KD
    Chem Commun (Camb); 2016 Dec; 52(98):14085-14088. PubMed ID: 27840880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly efficient modulation of FRET in an orthogonally arranged BODIPY-DTE dyad.
    Schweighöfer F; Dworak L; Hammer CA; Gustmann H; Zastrow M; Rück-Braun K; Wachtveitl J
    Sci Rep; 2016 Jun; 6():28638. PubMed ID: 27345216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water-Soluble, Thermostable, Photomodulated Color-Switching Quantum Dots.
    Díaz SA; Gillanders F; Susumu K; Oh E; Medintz IL; Jovin TM
    Chemistry; 2017 Jan; 23(2):263-267. PubMed ID: 27723151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gated Photochromism of Dithienylethene-Embedded Expanded Calixphyrins.
    Zhang F; Rao Y; Zhou M; Xu L; Osuka A; Song J
    Chemistry; 2023 Nov; 29(62):e202302340. PubMed ID: 37580279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multichromophoric sugar for fluorescence photoswitching.
    Maisonneuve S; Métivier R; Yu P; Nakatani K; Xie J
    Beilstein J Org Chem; 2014; 10():1471-81. PubMed ID: 24991302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rotaxane-type resorcinarene tetramers as histone-sensing fluorescent receptors.
    Hayashida O; Uchiyama M
    Org Biomol Chem; 2008 Sep; 6(17):3166-70. PubMed ID: 18698476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spiropyran-Functionalized Gold Nanoclusters with Photochromic Ability for Light-Controlled Fluorescence Bioimaging.
    Cong Y; Wang X; Zhu S; Liu L; Li L
    ACS Appl Bio Mater; 2021 Mar; 4(3):2790-2797. PubMed ID: 35014318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Diarylethene-Based Photoswitch and its Photomodulation of the Fluorescence of Conjugated Polymers.
    Liu R; Yang Y; Cui Q; Xu W; Peng R; Li L
    Chemistry; 2018 Dec; 24(67):17756-17766. PubMed ID: 30230070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient intramolecular energy transfer between two fluorophores in a bis-branched [3]rotaxane.
    Yao J; Li H; Xu YN; Wang QC; Qu DH
    Chem Asian J; 2014 Dec; 9(12):3482-90. PubMed ID: 25236595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular tweezer based on zinc porphyrin-substituted diarylethene.
    Park JE; Shin EJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):554-60. PubMed ID: 17329155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diversiform Nanostructures Constructed from Tetraphenylethene and Pyrene-Based Acid/Base Controllable Molecular Switching Amphiphilic [2]Rotaxanes with Tunable Aggregation-Induced Static Excimers.
    Arumugaperumal R; Shellaiah M; Srinivasadesikan V; Awasthi K; Sun KW; Lin MC; Ohta N; Chung WS
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45222-45234. PubMed ID: 32985177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determining the intracellular transport mechanism of a cleft-[2]rotaxane.
    Bao X; Isaacsohn I; Drew AF; Smithrud DB
    J Am Chem Soc; 2006 Sep; 128(37):12229-38. PubMed ID: 16967974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photochemical Unmasking of Polyyne Rotaxanes.
    Woltering SL; Gawel P; Christensen KE; Thompson AL; Anderson HL
    J Am Chem Soc; 2020 Aug; 142(31):13523-13532. PubMed ID: 32589030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using photoresponsive end-closing and end-opening reactions for the synthesis and disassembly of [2]rotaxanes: implications for dynamic covalent chemistry.
    Tokunaga Y; Akasaka K; Hashimoto N; Yamanaka S; Hisada K; Shimomura Y; Kakuchi S
    J Org Chem; 2009 Mar; 74(6):2374-9. PubMed ID: 19222247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Threading a peptide through a peptide: protein loops, rotaxanes, and knots.
    Blankenship JW; Dawson PE
    Protein Sci; 2007 Jul; 16(7):1249-56. PubMed ID: 17567748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.