These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36519720)

  • 1. Gene regulatory divergence amongst echinoderms underlies appearance of pigment cells in sea urchin development.
    Spurrell M; Oulhen N; Foster S; Perillo M; Wessel G
    Dev Biol; 2023 Feb; 494():13-25. PubMed ID: 36519720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New hypotheses of cell type diversity and novelty from orthology-driven comparative single cell and nuclei transcriptomics in echinoderms.
    Meyer A; Ku C; Hatleberg WL; Telmer CA; Hinman V
    Elife; 2023 Jul; 12():. PubMed ID: 37470227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition.
    Wessel GM; Kiyomoto M; Shen TL; Yajima M
    Sci Rep; 2020 Feb; 10(1):1973. PubMed ID: 32029769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory heterochronies and loose temporal scaling between sea star and sea urchin regulatory circuits.
    Gildor T; Hinman V; Ben-Tabou-De-Leon S
    Int J Dev Biol; 2017; 61(3-4-5):347-356. PubMed ID: 28621432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ciliary photoreceptors in sea urchin larvae indicate pan-deuterostome cell type conservation.
    Valencia JE; Feuda R; Mellott DO; Burke RD; Peter IS
    BMC Biol; 2021 Dec; 19(1):257. PubMed ID: 34863182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.
    Kadri S; Hinman VF; Benos PV
    PLoS One; 2011; 6(12):e29217. PubMed ID: 22216218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell RNA-sequencing analysis of early sea star development.
    Foster S; Oulhen N; Fresques T; Zaki H; Wessel G
    Development; 2022 Nov; 149(22):. PubMed ID: 36399063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intact cluster and chordate-like expression of ParaHox genes in a sea star.
    Annunziata R; Martinez P; Arnone MI
    BMC Biol; 2013 Jun; 11():68. PubMed ID: 23803323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P
    Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos.
    Satoh N; Hisata K; Foster S; Morita S; Nishitsuji K; Oulhen N; Tominaga H; Wessel GM
    Dev Biol; 2022 Mar; 483():128-142. PubMed ID: 35038441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H
    Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase.
    Calestani C; Rogers DJ
    Dev Biol; 2010 Apr; 340(2):249-55. PubMed ID: 20122918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii.
    Vaughn R; Garnhart N; Garey JR; Thomas WK; Livingston BT
    Evodevo; 2012 Sep; 3(1):19. PubMed ID: 22938175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF; Nguyen A; Davidson EH
    Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single-cell RNA-seq analysis of early larval cell-types of the starfish, Patiria pectinifera: Insights into evolution of the chordate body plan.
    Tominaga H; Nishitsuji K; Satoh N
    Dev Biol; 2023 Apr; 496():52-62. PubMed ID: 36717049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening.
    Calestani C; Rast JP; Davidson EH
    Development; 2003 Oct; 130(19):4587-96. PubMed ID: 12925586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular evolution of DNA-binding preference of a Tbrain transcription factor provides a mechanism for modifying gene regulatory networks.
    Cheatle Jarvela AM; Brubaker L; Vedenko A; Gupta A; Armitage BA; Bulyk ML; Hinman VF
    Mol Biol Evol; 2014 Oct; 31(10):2672-88. PubMed ID: 25016582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.