These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36519886)

  • 1. Molecular Mechanism of Chloramphenicol and Thiamphenicol Resistance Mediated by a Novel Oxidase, CmO, in
    Ma X; Zhang L; Ren Y; Yun H; Cui H; Li Q; Guo Y; Gao S; Zhang F; Wang A; Liang B
    Appl Environ Microbiol; 2023 Jan; 89(1):e0154722. PubMed ID: 36519886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase.
    Tao W; Lee MH; Wu J; Kim NH; Kim JC; Chung E; Hwang EC; Lee SW
    Appl Environ Microbiol; 2012 Sep; 78(17):6295-301. PubMed ID: 22752166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification, characterization, and distribution of novel amidase gene
    Qian Y; Lai L; Cheng M; Fang H; Fan D; Zylstra GJ; Huang X
    Appl Environ Microbiol; 2024 Nov; 90(11):e0151224. PubMed ID: 39431819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ChlOR, a GMC family oxidoreductase that evolved independently from the actinomycete, confers resistance to amphenicol antibiotics.
    Qian Y; Cheng M; Lai L; Zhou J; Zylstra GJ; Huang X
    Environ Microbiol; 2023 Dec; 25(12):3019-3034. PubMed ID: 37648667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics and catalytic mechanism of a novel multifunctional oxidase, CpmO, for chloramphenicols degradation from Sphingobium sp. WTD-1.
    Gao Y; Cheng H; Song Q; Huang J; Liu J; Pan D; Wu X
    J Hazard Mater; 2024 Mar; 465():133348. PubMed ID: 38154177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the biological significance of multiple metabolic pathways of chloramphenicol by Sphingobium sp. WTD-1.
    Gao Y; Chen Y; Zhu F; Pan D; Huang J; Wu X
    J Hazard Mater; 2024 May; 469():134069. PubMed ID: 38518693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Pathway for Chloramphenicol Catabolism in the Activated Sludge Bacterial Isolate
    Ma X; Liang B; Qi M; Yun H; Shi K; Li Z; Guo Y; Yan P; Liu SJ; Wang A
    Environ Sci Technol; 2020 Jun; 54(12):7591-7600. PubMed ID: 32412239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol.
    Zhang L; Toplak M; Saleem-Batcha R; Höing L; Jakob R; Jehmlich N; von Bergen M; Maier T; Teufel R
    Chembiochem; 2023 Jan; 24(2):e202200632. PubMed ID: 36353978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an efficient chloramphenicol-mineralizing bacterial consortium.
    Ma X; Qi M; Li Z; Zhao Y; Yan P; Liang B; Wang A
    Chemosphere; 2019 May; 222():149-155. PubMed ID: 30703654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cellular transport of chloramphenicol and thiamphenicol.
    McLeod TF; Manyan DR; Yunis AA
    J Lab Clin Med; 1977 Aug; 90(2):347-53. PubMed ID: 267694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel G2073A mutation in 23S rRNA in amphenicol-selected mutants of Campylobacter jejuni.
    Ma L; Shen Z; Naren G; Li H; Xia X; Wu C; Shen J; Zhang Q; Wang Y
    PLoS One; 2014; 9(4):e94503. PubMed ID: 24728007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives.
    Cannon M; Harford S; Davies J
    J Antimicrob Chemother; 1990 Sep; 26(3):307-17. PubMed ID: 2228823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of antibiotic thiamphenicol by bacterium Aeromonas hydrophila HS01.
    Yang K; Ren S; Mei M; Jin Y; Xiang W; Shi Z; Ai Z; Yi L; Xie B
    World J Microbiol Biotechnol; 2022 Jan; 38(3):37. PubMed ID: 35018528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and Structural Characterization of Diverse NfsB Chloramphenicol Reductase Enzymes from Human Pathogens.
    Mullowney MW; Maltseva NI; Endres M; Kim Y; Joachimiak A; Crofts TS
    Microbiol Spectr; 2022 Apr; 10(2):e0013922. PubMed ID: 35195438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chloramphenicol and thiamphenicol on the outcome of Chlamydia psittaci infection in chick embryo.
    Allegri G; Lucidi E; Marca G; Borgogelli E
    Chemotherapy; 1982; 28(2):119-28. PubMed ID: 7075324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The effect of chloramphenicol on sleep in cat -- comparison with thiamphenicol, erythromycine, and oxytetracycline (author's transl)].
    Petitjean F; Buda C; Janin M; David M; Jouvet M
    Psychopharmacology (Berl); 1979 Nov; 66(2):147-53. PubMed ID: 231275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis of bacterial resistance to chloramphenicol and florfenicol.
    Schwarz S; Kehrenberg C; Doublet B; Cloeckaert A
    FEMS Microbiol Rev; 2004 Nov; 28(5):519-42. PubMed ID: 15539072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of chloramphenicol and thiamphenicol metabolism.
    Dettli L; Krishna G; Ferrari V; Della Bella D
    Postgrad Med J; 1974 Oct; 50 Suppl 5():17-22. PubMed ID: 4470811
    [No Abstract]   [Full Text] [Related]  

  • 19. [Susceptibility to Thiamphenicol and Chloramphenicol of Anaerobic Bacteria (author's transl)].
    Werner H; Krasemann C; Gorniak W; Hermann A; Ungerechts J
    Zentralbl Bakteriol Orig A; 1977; 237(2-3):358-71. PubMed ID: 848218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering a novel chloramphenicols resistance mechanism: Oxidative inactivation of the propanediol pharmacophore.
    Zhang J; Yang C; Hu J; Zhang Y; Lai Y; Gong H; Guo F; Li X; Ye L; Li B
    Water Res; 2022 Oct; 225():119127. PubMed ID: 36155007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.