These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36520057)

  • 21. Material Flow Analysis with Multiple Material Characteristics to Assess the Potential for Flat Steel Prompt Scrap Prevention and Diversion without Remelting.
    Flint IP; Cabrera Serrenho A; Lupton RC; Allwood JM
    Environ Sci Technol; 2020 Feb; 54(4):2459-2466. PubMed ID: 31961662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.
    Nakamura S; Kondo Y; Matsubae K; Nakajima K; Tasaki T; Nagasaka T
    Environ Sci Technol; 2012 Sep; 46(17):9266-73. PubMed ID: 22876977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.
    Oustadakis P; Tsakiridis PE; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):1-7. PubMed ID: 20129730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of titanium 3D mesh interlayer for enhancing the electrochemical performance of zinc-bromine flow battery.
    Lee JN; Do E; Kim Y; Yu JS; Kim KJ
    Sci Rep; 2021 Feb; 11(1):4508. PubMed ID: 33627694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A High-Performance Aqueous Zinc-Bromine Static Battery.
    Gao L; Li Z; Zou Y; Yin S; Peng P; Shao Y; Liang X
    iScience; 2020 Aug; 23(8):101348. PubMed ID: 32711343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Thermodynamics and Kinetics of a Nitrogen Reaction in an Electric Arc Furnace Smelting Process.
    Zhang F; Li J; Liu W; Jiao A
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying Recycling and Losses of Cr and Ni in Steel Throughout Multiple Life Cycles Using MaTrace-Alloy.
    Nakamura S; Kondo Y; Nakajima K; Ohno H; Pauliuk S
    Environ Sci Technol; 2017 Sep; 51(17):9469-9476. PubMed ID: 28806506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metallurgical resource recovery from waste steelmaking slag from electric arc furnace.
    Mensah M; Das A
    Environ Technol; 2023 Jan; 44(2):260-277. PubMed ID: 34429031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polychlorinated naphthalene (PCN) emissions from scrap processing steel plants with electric-arc furnaces.
    Odabasi M; Dumanoglu Y; Kara M; Altiok H; Elbir T; Bayram A
    Sci Total Environ; 2017 Jan; 574():1305-1312. PubMed ID: 27637279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decarbonising the iron and steel sector for a 2 °C target using inherent waste streams.
    Sun Y; Tian S; Ciais P; Zeng Z; Meng J; Zhang Z
    Nat Commun; 2022 Jan; 13(1):297. PubMed ID: 35027534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of hot metal temperature on CO
    Díaz J; Fernández FJ
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):33-42. PubMed ID: 31522401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recycling of metals: accounting of greenhouse gases and global warming contributions.
    Damgaard A; Larsen AW; Christensen TH
    Waste Manag Res; 2009 Nov; 27(8):773-80. PubMed ID: 19767324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius.
    Mauthoor S; Mohee R; Kowlesser P
    Waste Manag; 2014 Oct; 34(10):1800-5. PubMed ID: 24433820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Zinc-Bromine Battery with Deep Eutectic Electrolytes.
    Heo J; Shin K; Kim HT
    Adv Sci (Weinh); 2022 Dec; 9(36):e2204908. PubMed ID: 36310120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The steel scrap age.
    Pauliuk S; Milford RL; Müller DB; Allwood JM
    Environ Sci Technol; 2013 Apr; 47(7):3448-54. PubMed ID: 23442209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recycling of an electric arc furnace flue dust to obtain high grade ZnO.
    Ruiz O; Clemente C; Alonso M; Alguacil FJ
    J Hazard Mater; 2007 Mar; 141(1):33-6. PubMed ID: 16876937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mineral phases of weathered and recent electric arc furnace dust.
    Martins FM; dos Reis Neto JM; da Cunha CJ
    J Hazard Mater; 2008 Jun; 154(1-3):417-25. PubMed ID: 18037237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical Growth of Polybromides.
    Lee JH; Byun Y; Jeong GH; Choi C; Kwen J; Kim R; Kim IH; Kim SO; Kim HT
    Adv Mater; 2019 Dec; 31(52):e1904524. PubMed ID: 31650656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrometallurgical processing of carbon steel EAF dust.
    Havlík T; Vidor e Souza B; Bernardes AM; Schneider IA; Miskufová A
    J Hazard Mater; 2006 Jul; 135(1-3):311-8. PubMed ID: 16442223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.