BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36520349)

  • 1. Analysis of composition and microstructure of diatom frustules in mud on the coast of Boryeong- city, South Korea.
    Bok MK; Chin CH; Choi HJ; Ham JH; Chang BS
    Appl Microsc; 2022 Dec; 52(1):12. PubMed ID: 36520349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifying the thickness, pore size, and composition of diatom frustule in Pinnularia sp. with Al
    Soleimani M; Rutten L; Maddala SP; Wu H; Eren ED; Mezari B; Schreur-Piet I; Friedrich H; van Benthem RATM
    Sci Rep; 2020 Nov; 10(1):19498. PubMed ID: 33177559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the Hemostasis Characteristics of Biomaterial Frustules Obtained from Diatom
    Luo Y; Li S; Shen K; Song Y; Zhang J; Su W; Yang X
    Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccumulation of Titanium in diatom Cyclotella atomus Hust.
    Sanniyasi E; Gopal RK; Damodharan R; Thirumurugan T; Mahendran V
    Biometals; 2024 Feb; 37(1):71-86. PubMed ID: 37566151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of
    Li Q; Gluch J; Liao Z; Posseckardt J; Clausner A; Łępicka M; Grądzka-Dahlke M; Zschech E
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34202999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmentally superior cleaning of diatom frustules using sono-Fenton process: Facile fabrication of nanoporous silica with homogeneous morphology and controlled size.
    Gholami P; Khataee A; Bhatnagar A
    Ultrason Sonochem; 2020 Jun; 64():105044. PubMed ID: 32146334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications.
    Marchetti A; Cassar N
    Geobiology; 2009 Sep; 7(4):419-31. PubMed ID: 19659798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlinking diatom frustule diversity from the abyss of the central Arabian Sea to surface processes: physical forcing and oxygen minimum zone.
    Pandey M; Biswas H; Chowdhury M
    Environ Monit Assess; 2022 Nov; 195(1):161. PubMed ID: 36443481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of lysozyme from chicken egg white using diatom frustules.
    Guan YF; Lai SY; Lin CS; Suen SY; Wang MY
    Food Chem; 2019 Jul; 286():483-490. PubMed ID: 30827636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. It's elemental! Siliceous diatom frustules producing sarcoid-like granulomas in the subcutis.
    Morales-Neira D
    J Cutan Pathol; 2021 Jun; 48(6):795-801. PubMed ID: 33600017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminescence properties of a nanoporous freshwater diatom.
    Goswami B; Choudhury A; Buragohain AK
    Luminescence; 2012; 27(1):16-9. PubMed ID: 21618682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capsules of the diatom Achnanthidium minutissimum arise from fibrillar precursors and foster attachment of bacteria.
    Leinweber K; Kroth PG
    PeerJ; 2015; 3():e858. PubMed ID: 25834772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and physical-chemical properties of baked nanoporous frustules.
    Umemura K; Noguchi Y; Ichinose T; Hirose Y; Mayama S
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5220-4. PubMed ID: 21125874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tentative identification of key factors determining the hemostatic efficiency of diatom frustule.
    Wang L; Pan K; Zhang L; Zhou C; Li Y; Zhu B; Han J
    Biomater Sci; 2021 Mar; 9(6):2162-2173. PubMed ID: 33496686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of elemental distributions and local analysis of element-specific chemical states of an Arachnoidiscus sp. frustule using soft X-ray spectromicroscopy.
    Ishihara T; Ohkochi T; Yamaguchi A; Kotani Y; Oura M
    PLoS One; 2020; 15(12):e0243874. PubMed ID: 33326474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydraulic retention time governed the micro/nanostructures of titanium-incorporated diatoms and their photocatalytic activity.
    Li Y; Zhang C; Hu Z
    Environ Pollut; 2024 Mar; 345():123398. PubMed ID: 38272163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of nanoindentation response of diatom frustules.
    Yao S; Subhash G; Maiti S
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4465-72. PubMed ID: 18283829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of photocatalyst using diatom frustules by liquid phase deposition method.
    Umemura K; Gao Y; Nishikawa T
    J Nanosci Nanotechnol; 2010 Aug; 10(8):4883-8. PubMed ID: 21125823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titanium uptake and incorporation into silica nanostructures by the diatom
    Chauton MS; Skolem LM; Olsen LM; Vullum PE; Walmsley J; Vadstein O
    J Appl Phycol; 2015; 27(2):777-786. PubMed ID: 25866446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoluminescence shift in frustules of two pennate diatoms and nanostructural changes to their pores.
    Arteaga-Larios NV; Nahmad Y; Navarro-Contreras HR; Encinas A; Viridiana García-Meza J
    Luminescence; 2014 Dec; 29(8):969-76. PubMed ID: 24585632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.