BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36520630)

  • 1. Quantification of protein enrichment at site-specific DNA double-strand breaks by chromatin immunoprecipitation in cultured human cells.
    Sharma AK; Fitieh AM; Locke AJ; Ali JYH; Ismail IH
    STAR Protoc; 2023 Mar; 4(1):101917. PubMed ID: 36520630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol to measure end resection intermediates at sequence-specific DNA double-strand breaks by quantitative polymerase chain reaction using ER-AsiSI U2OS cells.
    Sharma AK; Fitieh AM; Hafez Ali JY; Ismail IH
    STAR Protoc; 2022 Dec; 3(4):101861. PubMed ID: 36595899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChIP Technique to Study Protein Dynamics at Defined DNA Double Strand Breaks.
    Wen J; Concannon P
    Methods Mol Biol; 2017; 1599():245-262. PubMed ID: 28477124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the chromatin landscape induced around DNA double strand breaks.
    Massip L; Caron P; Iacovoni JS; Trouche D; Legube G
    Cell Cycle; 2010 Aug; 9(15):2963-72. PubMed ID: 20714222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle-dependent resolution of DNA double-strand breaks.
    Ambrosio S; Di Palo G; Napolitano G; Amente S; Dellino GI; Faretta M; Pelicci PG; Lania L; Majello B
    Oncotarget; 2016 Jan; 7(4):4949-60. PubMed ID: 26700820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of protein dynamics and DNA repair following generation of DNA double-strand breaks at defined genomic sites.
    Berkovich E; Monnat RJ; Kastan MB
    Nat Protoc; 2008; 3(5):915-22. PubMed ID: 18451799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducible Expression of the Restriction Enzyme Uncovered Genome-Wide Distribution and Dynamic Behavior of Histones H4K16ac and H2A.Z at DNA Double-Strand Breaks in Arabidopsis.
    Kawaguchi K; Kazama M; Hata T; Matsuo M; Obokata J; Satoh S
    Plant Cell Physiol; 2024 Jan; 65(1):142-155. PubMed ID: 37930797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair.
    Berkovich E; Monnat RJ; Kastan MB
    Nat Cell Biol; 2007 Jun; 9(6):683-90. PubMed ID: 17486112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular assays to investigate chromatin changes during DNA double-strand break repair in yeast.
    Houghtaling S; Tsukuda T; Osley MA
    Methods Mol Biol; 2011; 745():79-97. PubMed ID: 21660690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs) in human cells.
    Becker A; Durante M; Taucher-Scholz G; Jakob B
    PLoS One; 2014; 9(3):e92640. PubMed ID: 24651490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recruitment of Scc2/4 to double-strand breaks depends on γH2A and DNA end resection.
    Scherzer M; Giordano F; Ferran MS; Ström L
    Life Sci Alliance; 2022 May; 5(5):. PubMed ID: 35086935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic overview on the most widespread techniques for inducing and visualizing the DNA double-strand breaks.
    Berzsenyi I; Pantazi V; Borsos BN; Pankotai T
    Mutat Res Rev Mutat Res; 2021; 788():108397. PubMed ID: 34893162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strand-specific ChIP-seq at DNA breaks distinguishes ssDNA versus dsDNA binding and refutes single-stranded nucleosomes.
    Peritore M; Reusswig KU; Bantele SCS; Straub T; Pfander B
    Mol Cell; 2021 Apr; 81(8):1841-1853.e4. PubMed ID: 33651987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of polycomb group proteins in the DNA damage response--a reassessment.
    Chandler H; Patel H; Palermo R; Brookes S; Matthews N; Peters G
    PLoS One; 2014; 9(7):e102968. PubMed ID: 25057768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Mapping of Histone Modifications at DNA Double-Strand Breaks Deciphers Repair Pathway Chromatin Signatures.
    Clouaire T; Rocher V; Lashgari A; Arnould C; Aguirrebengoa M; Biernacka A; Skrzypczak M; Aymard F; Fongang B; Dojer N; Iacovoni JS; Rowicka M; Ginalski K; Côté J; Legube G
    Mol Cell; 2018 Oct; 72(2):250-262.e6. PubMed ID: 30270107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular Rosetta Stone to decipher the impact of chromatin features on the repair of Cas9-mediated DNA double-strand breaks.
    Caron P; Pobega E; Polo SE
    Mol Cell; 2021 May; 81(10):2059-2060. PubMed ID: 34019786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification.
    Chailleux C; Aymard F; Caron P; Daburon V; Courilleau C; Canitrot Y; Legube G; Trouche D
    Nat Protoc; 2014 Mar; 9(3):517-28. PubMed ID: 24504477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting RNA-protein proximity at DNA double-strand breaks using combined fluorescence in situ hybridization with proximity ligation assay.
    Alagia A; Ketley RF; Gullerova M
    STAR Protoc; 2023 Mar; 4(1):102096. PubMed ID: 36825808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MYC impairs resolution of site-specific DNA double-strand breaks repair.
    Ambrosio S; Amente S; Napolitano G; Di Palo G; Lania L; Majello B
    Mutat Res; 2015 Apr; 774():6-13. PubMed ID: 25770827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair.
    McCord RA; Michishita E; Hong T; Berber E; Boxer LD; Kusumoto R; Guan S; Shi X; Gozani O; Burlingame AL; Bohr VA; Chua KF
    Aging (Albany NY); 2009 Jan; 1(1):109-21. PubMed ID: 20157594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.