These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36520712)

  • 1. Eleven quick tips for data cleaning and feature engineering.
    Chicco D; Oneto L; Tavazzi E
    PLoS Comput Biol; 2022 Dec; 18(12):e1010718. PubMed ID: 36520712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ten quick tips for machine learning in computational biology.
    Chicco D
    BioData Min; 2017; 10():35. PubMed ID: 29234465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ten quick tips for bioinformatics analyses using an Apache Spark distributed computing environment.
    Chicco D; Ferraro Petrillo U; Cattaneo G
    PLoS Comput Biol; 2023 Jul; 19(7):e1011272. PubMed ID: 37471333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ten quick tips for avoiding pitfalls in multi-omics data integration analyses.
    Chicco D; Cumbo F; Angione C
    PLoS Comput Biol; 2023 Jul; 19(7):e1011224. PubMed ID: 37410704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ten quick tips for computational analysis of medical images.
    Chicco D; Shiradkar R
    PLoS Comput Biol; 2023 Jan; 19(1):e1010778. PubMed ID: 36602952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nine quick tips for pathway enrichment analysis.
    Chicco D; Agapito G
    PLoS Comput Biol; 2022 Aug; 18(8):e1010348. PubMed ID: 35951505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ten quick tips for fuzzy logic modeling of biomedical systems.
    Chicco D; Spolaor S; Nobile MS
    PLoS Comput Biol; 2023 Dec; 19(12):e1011700. PubMed ID: 38127800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omics Analyses: How to Navigate Through a Constant Data Deluge.
    Denecker T; Lelandais G
    Methods Mol Biol; 2022; 2477():457-471. PubMed ID: 35524132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FEPS: A Tool for Feature Extraction from Protein Sequence.
    Ismail H; White C; Al-Barakati H; Newman RH; Kc DB
    Methods Mol Biol; 2022; 2499():65-104. PubMed ID: 35696075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An application of machine learning with feature selection to improve diagnosis and classification of neurodegenerative disorders.
    Álvarez JD; Matias-Guiu JA; Cabrera-Martín MN; Risco-Martín JL; Ayala JL
    BMC Bioinformatics; 2019 Oct; 20(1):491. PubMed ID: 31601182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Random Forest-Based All-Relevant Feature Ranks for Trustworthy AI.
    Pfeifer B; Holzinger A; Schimek MG
    Stud Health Technol Inform; 2022 May; 294():137-138. PubMed ID: 35612038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FLIRT: A feature generation toolkit for wearable data.
    Föll S; Maritsch M; Spinola F; Mishra V; Barata F; Kowatsch T; Fleisch E; Wortmann F
    Comput Methods Programs Biomed; 2021 Nov; 212():106461. PubMed ID: 34736174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated feature engineering improves prediction of protein-protein interactions.
    Sumonja N; Gemovic B; Veljkovic N; Perovic V
    Amino Acids; 2019 Aug; 51(8):1187-1200. PubMed ID: 31278492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Protein-Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures.
    Liu GH; Shen HB; Yu DJ
    J Membr Biol; 2016 Apr; 249(1-2):141-53. PubMed ID: 26563228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the limitations of biophysical propensity scales coupled with machine learning for protein sequence analysis.
    Raimondi D; Orlando G; Vranken WF; Moreau Y
    Sci Rep; 2019 Nov; 9(1):16932. PubMed ID: 31729443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.