These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 36520775)

  • 1. Nijboer-Zernike's aberration theory: computational achievements via Tchebychev's polynomials approximation theory.
    Borghi R
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):C253-C265. PubMed ID: 36520775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations.
    El Gawhary O
    Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system.
    Braat JJ; Dirksen P; Janssen AJ; van Haver S; van de Nes AS
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2635-50. PubMed ID: 16396023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended Nijboer-Zernike approach for the computation of optical point-spread functions.
    Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):849-57. PubMed ID: 11999961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation on Zernike's phase-contrast microscope.
    Liang R; Erwin JK; Mansuripur M
    Appl Opt; 2000 May; 39(13):2152-8. PubMed ID: 18345120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fresnel transform as a projection onto a Nijboer-Zernike basis set.
    Wu Y; Hillenbrand M; Zhao L; Sinzinger S; Kelly DP
    Opt Lett; 2015 Aug; 40(15):3472-5. PubMed ID: 26258335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recursive formula to compute Zernike radial polynomials.
    Honarvar Shakibaei B; Paramesran R
    Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modal-based phase retrieval for adaptive optics.
    Antonello J; Verhaegen M
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jun; 32(6):1160-70. PubMed ID: 26367051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefront aberrations of x-ray dynamical diffraction beams.
    Liao K; Hong Y; Sheng W
    Appl Opt; 2014 Oct; 53(28):6362-70. PubMed ID: 25322219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials.
    Rahbar K; Faez K; Attaran Kakhki E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics.
    Bloemhof E; Wallace J
    Opt Express; 2004 Dec; 12(25):6240-5. PubMed ID: 19488269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of trabeculectomy on ocular and corneal higher order aberrations.
    Fukuoka S; Amano S; Honda N; Mimura T; Usui T; Araie M
    Jpn J Ophthalmol; 2011 Sep; 55(5):460-466. PubMed ID: 21773749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Solving resolution of diffraction gratings using coefficients of Zernike polynomials].
    Yu HL; Qi XD; Bayanheshig ; Tang YG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):264-7. PubMed ID: 22497173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vectorial aerial-image computations of three-dimensional objects based on the extended Nijboer-Zernike theory.
    van Haver S; Braat JJ; Janssen AJ; Janssen OT; Pereira SF
    J Opt Soc Am A Opt Image Sci Vis; 2009 May; 26(5):1221-34. PubMed ID: 19412241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthonormal polynomials describing polarization aberration for M-fold optical systems.
    Xu X; Huang W; Xu M
    Opt Express; 2016 Mar; 24(5):4906-4912. PubMed ID: 29092318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated fast computational adaptive optics for optical coherence tomography based on a stochastic parallel gradient descent algorithm.
    Zhu D; Wang R; Žurauskas M; Pande P; Bi J; Yuan Q; Wang L; Gao Z; Boppart SA
    Opt Express; 2020 Aug; 28(16):23306-23319. PubMed ID: 32752329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.
    Mahajan VN
    Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.
    Mahajan VN; Aftab M
    Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spherical aberration measurement of a microscope objective by use of calibrated spherical particles.
    Abdelsalam DG; Stanislas M
    Appl Opt; 2017 Jun; 56(16):4766-4771. PubMed ID: 29047613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zernike monomials in wide field of view optical designs.
    Johnson TP; Sasian J
    Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.