These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36520814)

  • 1. Computed Tomography slice interpolation in the longitudinal direction based on deep learning techniques: To reduce slice thickness or slice increment without dose increase.
    Wu S; Nakao M; Imanishi K; Nakamura M; Mizowaki T; Matsuda T
    PLoS One; 2022; 17(12):e0279005. PubMed ID: 36520814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart.
    Kachelriess M; Ulzheimer S; Kalender WA
    Med Phys; 2000 Aug; 27(8):1881-902. PubMed ID: 10984235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse-view CT reconstruction based on multi-level wavelet convolution neural network.
    Lee M; Kim H; Kim HJ
    Phys Med; 2020 Dec; 80():352-362. PubMed ID: 33279829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of metal artifact reduction on the retrieval of attenuation values.
    Ziemann C; Stille M; Cremers F; Rades D; Buzug TM
    J Appl Clin Med Phys; 2017 Jan; 18(1):243-250. PubMed ID: 28291909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning based correction of low performing pixel in computed tomography.
    Patil BD; Singhal V; Agrawal U; Langoju R; Hsieh J; Lakshminarasimhan S; Das B
    Biomed Phys Eng Express; 2022 Aug; 8(5):. PubMed ID: 35939980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-slice helical CT: scan and reconstruction.
    Hu H
    Med Phys; 1999 Jan; 26(1):5-18. PubMed ID: 9949393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LRR-CED: low-resolution reconstruction-aware convolutional encoder-decoder network for direct sparse-view CT image reconstruction.
    Kandarpa VSS; Perelli A; Bousse A; Visvikis D
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35738249
    [No Abstract]   [Full Text] [Related]  

  • 12. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography.
    Gong H; Ren L; Hsieh SS; McCollough CH; Yu L
    Med Phys; 2021 Oct; 48(10):5712-5726. PubMed ID: 34415068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. End-to-end deep learning for interior tomography with low-dose x-ray CT.
    Han Y; Wu D; Kim K; Li Q
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35390782
    [No Abstract]   [Full Text] [Related]  

  • 15. Synthetic CT generation from CBCT images via deep learning.
    Chen L; Liang X; Shen C; Jiang S; Wang J
    Med Phys; 2020 Mar; 47(3):1115-1125. PubMed ID: 31853974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.
    Lee D; Choi S; Kim HJ
    Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generative adversarial networks improve interior computed tomography angiography reconstruction.
    Ketola JHJ; Heino H; Juntunen MAK; Nieminen MT; Siltanen S; Inkinen SI
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34673559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer.
    Park S; Lee SM; Do KH; Lee JG; Bae W; Park H; Jung KH; Seo JB
    Korean J Radiol; 2019 Oct; 20(10):1431-1440. PubMed ID: 31544368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A streak artifact reduction algorithm in sparse-view CT using a self-supervised neural representation.
    Kim B; Shim H; Baek J
    Med Phys; 2022 Dec; 49(12):7497-7515. PubMed ID: 35880806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Favorable noise uniformity properties of Fourier-based interpolation and reconstruction approaches in single-slice helical computed tomography.
    La Rivière PJ; Pan X
    Med Phys; 2002 Jun; 29(6):943-51. PubMed ID: 12094989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.