BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 36520934)

  • 1. Inhibition of c-Rel expression in myeloid and lymphoid cells with distearoyl -phosphatidylserine (DSPS) liposomal nanoparticles encapsulating therapeutic siRNA.
    Bressy C; Zemani A; Goyal S; Jishkariani D; Lee CN; Chen YH
    PLoS One; 2022; 17(12):e0276905. PubMed ID: 36520934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivering mRNA to Secondary Lymphoid Tissues by Phosphatidylserine-Loaded Lipid Nanoparticles.
    Gomi M; Sakurai Y; Sato M; Tanaka H; Miyatake Y; Fujiwara K; Watanabe M; Shuto S; Nakai Y; Tange K; Hatakeyama H; Akita H
    Adv Healthc Mater; 2023 Apr; 12(9):e2202528. PubMed ID: 36535635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The efficiency of lipid nanoparticles with an original cationic lipid as a siRNA delivery system for macrophages and dendritic cells.
    Uemura Y; Naoi T; Kanai Y; Kobayashi K
    Pharm Dev Technol; 2019 Mar; 24(3):263-268. PubMed ID: 29688101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. siRNA-mediated c-Rel knockdown ameliorates collagen-induced arthritis in mice.
    Fan T; Zhong F; Liu R; Chen YH; Wang T; Ruan Q
    Int Immunopharmacol; 2018 Mar; 56():9-17. PubMed ID: 29324391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphatidylserine Lipid Nanoparticles Promote Systemic RNA Delivery to Secondary Lymphoid Organs.
    Luozhong S; Yuan Z; Sarmiento T; Chen Y; Gu W; McCurdy C; Gao W; Li R; Wilkens S; Jiang S
    Nano Lett; 2022 Oct; 22(20):8304-8311. PubMed ID: 36194390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNAi-mediated c-Rel silencing leads to apoptosis of B cell tumor cells and suppresses antigenic immune response in vivo.
    Tian W; Liou HC
    PLoS One; 2009; 4(4):e5028. PubMed ID: 19347041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy.
    Quick J; Santos ND; Cheng MHY; Chander N; Brimacombe CA; Kulkarni J; van der Meel R; Tam YYC; Witzigmann D; Cullis PR
    J Control Release; 2022 Sep; 349():174-183. PubMed ID: 35780952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of siRNA-Loaded Lipid Nanoparticles Targeting Long Non-Coding RNA LINC01257 as a Novel and Safe Therapeutic Approach for t(8;21) Pediatric Acute Myeloid Leukemia.
    Connerty P; Moles E; de Bock CE; Jayatilleke N; Smith JL; Meshinchi S; Mayoh C; Kavallaris M; Lock RB
    Pharmaceutics; 2021 Oct; 13(10):. PubMed ID: 34683974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid nanoparticle-based mRNA candidates elicit potent T cell responses.
    Zeng Y; Escalona-Rayo O; Knol R; Kros A; Slütter B
    Biomater Sci; 2023 Jan; 11(3):964-974. PubMed ID: 36537916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted delivery of let-7a microRNA encapsulated ephrin-A1 conjugated liposomal nanoparticles inhibit tumor growth in lung cancer.
    Lee HY; Mohammed KA; Kaye F; Sharma P; Moudgil BM; Clapp WL; Nasreen N
    Int J Nanomedicine; 2013; 8():4481-94. PubMed ID: 24293999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision treatment of viral pneumonia through macrophage-targeted lipid nanoparticle delivery.
    Zhao G; Xue L; Geisler HC; Xu J; Li X; Mitchell MJ; Vaughan AE
    Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2314747121. PubMed ID: 38315853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of siRNA-Loaded Lipid Nanoparticles using a Microfluidic Device.
    Maeki M; Okada Y; Uno S; Niwa A; Ishida A; Tani H; Tokeshi M
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Development of siRNA Delivery Targeting the Tumor Microenvironment with a New Functional Device].
    Sakurai Y
    Yakugaku Zasshi; 2019; 139(11):1357-1363. PubMed ID: 31685731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Stability of siRNA-Loaded Lipid Nanoparticles Prepared with a PEG-Monoacyl Fatty Acid Facilitates Ligand-Mediated siRNA Delivery.
    Sakurai Y; Mizumura W; Ito K; Iwasaki K; Katoh T; Goto Y; Suga H; Harashima H
    Mol Pharm; 2020 Apr; 17(4):1397-1404. PubMed ID: 32091909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-reversible lipid derivative: A novel type of pH-responsive lipid for nanoparticle-mediated siRNA delivery.
    Hirai Y; Saeki R; Song F; Koide H; Fukata N; Tomita K; Maeda N; Oku N; Asai T
    Int J Pharm; 2020 Jul; 585():119479. PubMed ID: 32473372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.
    Tam A; Kulkarni J; An K; Li L; Dorscheid DR; Singhera GK; Bernatchez P; Reid G; Chan K; Witzigmann D; Cullis PR; Sin DD; Lim CJ
    Eur J Pharm Sci; 2022 Sep; 176():106234. PubMed ID: 35688311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Insights into the Role of Cholesterol in Inverted Hexagonal Phase Stabilization and Endosomal Drug Release.
    Ramezanpour M; Tieleman DP
    Langmuir; 2022 Jun; 38(24):7462-7471. PubMed ID: 35675506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of lipid nanoparticles and liposomes reference materials (II): cytotoxic profiles.
    Syama K; Jakubek ZJ; Chen S; Zaifman J; Tam YYC; Zou S
    Sci Rep; 2022 Oct; 12(1):18071. PubMed ID: 36302886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibody-modified lipid nanoparticles for selective delivery of siRNA to tumors expressing membrane-anchored form of HB-EGF.
    Okamoto A; Asai T; Kato H; Ando H; Minamino T; Mekada E; Oku N
    Biochem Biophys Res Commun; 2014 Jul; 449(4):460-5. PubMed ID: 24853808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.