These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 36521217)
1. Experimental investigation for treating ibuprofen and triclosan by biosurfactant from domestic wastewater. Jayalatha NA; Devatha CP J Environ Manage; 2023 Feb; 328():116913. PubMed ID: 36521217 [TBL] [Abstract][Full Text] [Related]
2. Degradation of Triclosan from Domestic Wastewater by Biosurfactant Produced from Bacillus licheniformis. Jayalatha NA; Devatha CP Mol Biotechnol; 2019 Sep; 61(9):674-680. PubMed ID: 31218651 [TBL] [Abstract][Full Text] [Related]
3. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Araújo HWC; Andrade RFS; Montero-Rodríguez D; Rubio-Ribeaux D; Alves da Silva CA; Campos-Takaki GM Microb Cell Fact; 2019 Jan; 18(1):2. PubMed ID: 30609918 [TBL] [Abstract][Full Text] [Related]
4. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Sun S; Wang Y; Zang T; Wei J; Wu H; Wei C; Qiu G; Li F Bioresour Technol; 2019 Jun; 281():421-428. PubMed ID: 30849698 [TBL] [Abstract][Full Text] [Related]
5. New bacterial strains for ibuprofen biodegradation: Drug removal, transformation, and potential catabolic genes. Lara-Moreno A; Costa MC; Vargas-Villagomez A; Carlier JD Environ Microbiol Rep; 2024 Aug; 16(4):e13320. PubMed ID: 39187308 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment. Ferrando-Climent L; Collado N; Buttiglieri G; Gros M; Rodriguez-Roda I; Rodriguez-Mozaz S; Barceló D Sci Total Environ; 2012 Nov; 438():404-13. PubMed ID: 23022724 [TBL] [Abstract][Full Text] [Related]
7. Biosurfactant production from newly isolated Rhodotorula sp.YBR and its great potential in enhanced removal of hydrocarbons from contaminated soils. Derguine-Mecheri L; Kebbouche-Gana S; Djenane D World J Microbiol Biotechnol; 2021 Jan; 37(1):18. PubMed ID: 33394175 [TBL] [Abstract][Full Text] [Related]
8. Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints. Pusceddu FH; Choueri RB; Pereira CDS; Cortez FS; Santos DRA; Moreno BB; Santos AR; Rogero JR; Cesar A Environ Pollut; 2018 Jan; 232():274-283. PubMed ID: 28958726 [TBL] [Abstract][Full Text] [Related]
9. Biotransformation of ibuprofen in biological sludge systems: Investigation of performance and mechanisms. Jia Y; Yin L; Khanal SK; Zhang H; Oberoi AS; Lu H Water Res; 2020 Mar; 170():115303. PubMed ID: 31751892 [TBL] [Abstract][Full Text] [Related]
10. Isolation and identification of Pseudomonas from wastewater, its immobilization in cellulose biopolymer and performance in degrading Triclosan. Devatha CP; Pavithra N J Environ Manage; 2019 Feb; 232():584-591. PubMed ID: 30513484 [TBL] [Abstract][Full Text] [Related]
11. Deciphering the triclosan degradation mechanism in Sphingomonas sp. strain YL-JM2C: Implications for wastewater treatment and marine resources. Pan P; Gu Y; Li T; Zhou NY; Xu Y J Hazard Mater; 2024 Oct; 478():135511. PubMed ID: 39173390 [TBL] [Abstract][Full Text] [Related]
12. Biological treatment of triclosan using a novel strain of Enterobacter cloacae and introducing naphthalene dioxygenase as an effective enzyme. Ghafouri M; Pourjafar F; Ghobadi Nejad Z; Yaghmaei S J Hazard Mater; 2023 Oct; 459():131833. PubMed ID: 37473572 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of Bacterial Adhesion and Antibiofilm Activities of a Glycolipid Biosurfactant from Patel M; Siddiqui AJ; Hamadou WS; Surti M; Awadelkareem AM; Ashraf SA; Alreshidi M; Snoussi M; Rizvi SMD; Bardakci F; Jamal A; Sachidanandan M; Adnan M Antibiotics (Basel); 2021 Dec; 10(12):. PubMed ID: 34943758 [TBL] [Abstract][Full Text] [Related]
14. Production of Biosurfactants by Silva MA; Silva AF; Rufino RD; Luna JM; Santos VA; Sarubbo LA Water Environ Res; 2017 Feb; 89(2):117-126. PubMed ID: 27196308 [TBL] [Abstract][Full Text] [Related]
15. Treatment of oily effluent using a low-cost biosurfactant in a flotation system. Silva EJ; Silva IA; Brasileiro PPF; Correa PF; Almeida DG; Rufino RD; Luna JM; Santos VA; Sarubbo LA Biodegradation; 2019 Aug; 30(4):335-350. PubMed ID: 31236770 [TBL] [Abstract][Full Text] [Related]
16. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Montagnolli RN; Lopes PR; Bidoia ED Environ Monit Assess; 2015 Jan; 187(1):4116. PubMed ID: 25412888 [TBL] [Abstract][Full Text] [Related]
17. The yeast-like fungus Aureobasidium thailandense LB01 produces a new biosurfactant using olive oil mill wastewater as an inducer. Meneses DP; Gudiña EJ; Fernandes F; Gonçalves LRB; Rodrigues LR; Rodrigues S Microbiol Res; 2017 Nov; 204():40-47. PubMed ID: 28870290 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon. Patowary K; Patowary R; Kalita MC; Deka S Front Microbiol; 2017; 8():279. PubMed ID: 28275373 [TBL] [Abstract][Full Text] [Related]
19. Biosurfactant: A new frontier for greener technology and environmental sustainability. Jimoh AA; Lin J Ecotoxicol Environ Saf; 2019 Nov; 184():109607. PubMed ID: 31505408 [TBL] [Abstract][Full Text] [Related]
20. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant. Patowary R; Patowary K; Kalita MC; Deka S Appl Biochem Biotechnol; 2016 Oct; 180(3):383-399. PubMed ID: 27142272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]