These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36521622)

  • 1. Thermodynamic effects drive countergradient responses in the thermal performance of Littorina saxatilis across latitude.
    Dwane C; Rezende EL; Tills O; Galindo J; Rolán-Alvarez E; Rundle S; Truebano M
    Sci Total Environ; 2023 Mar; 863():160877. PubMed ID: 36521622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do differences in developmental mode shape the potential for local adaptation?
    Jupe LL; Bilton DT; Knights AM
    Ecology; 2020 Mar; 101(3):e02942. PubMed ID: 31778204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring temperature adaptation from thermal performance curves of somatic growth rate: The importance of growth measurements and mortality.
    Einum S; Bartuseviciute V; Fossen EIF; Pelabon C
    J Evol Biol; 2023 Feb; 36(2):424-431. PubMed ID: 36484596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes.
    Sokolova IM; Pörtner HO
    J Exp Biol; 2003 Jan; 206(Pt 1):195-207. PubMed ID: 12456709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environment and phenology shape local adaptation in thermal performance.
    Villeneuve AR; Komoroske LM; Cheng BS
    Proc Biol Sci; 2021 Jul; 288(1955):20210741. PubMed ID: 34315262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling from Metabolism to Population Growth Rate to Understand How Acclimation Temperature Alters Thermal Performance.
    Luhring TM; DeLong JP
    Integr Comp Biol; 2017 Jul; 57(1):103-111. PubMed ID: 28662571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature adaptation and its impact on the shape of performance curves in
    Alruiz JM; Peralta-Maraver I; Bozinovic F; Santos M; Rezende EL
    Proc Biol Sci; 2023 May; 290(1998):20230507. PubMed ID: 37161321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraspecific variation in thermal performance curves for early development in Fundulus heteroclitus.
    Blanchard TS; Earhart ML; Shatsky AK; Schulte PM
    J Exp Zool A Ecol Integr Physiol; 2024 May; ():. PubMed ID: 38769744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient.
    Gaitán-Espitia JD; Bacigalupe LD; Opitz T; Lagos NA; Timmermann T; Lardies MA
    J Exp Biol; 2014 Dec; 217(Pt 24):4379-86. PubMed ID: 25394627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of thermal performance curves in a narrow range endemic water beetle.
    Pallarés S; Verberk WCEP; Bilton DT
    J Therm Biol; 2021 Dec; 102():103113. PubMed ID: 34863476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing thermal performance curves across traits: how consistent are they?
    Kellermann V; Chown SL; Schou MF; Aitkenhead I; Janion-Scheepers C; Clemson A; Scott MT; Sgrò CM
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usefulness and limitations of thermal performance curves in predicting ectotherm development under climatic variability.
    Khelifa R; Blanckenhorn WU; Roy J; Rohner PT; Mahdjoub H
    J Anim Ecol; 2019 Dec; 88(12):1901-1912. PubMed ID: 31365760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.
    MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline.
    Gaitán-Espitia JD; Bacigalupe LD; Opitz T; Lagos NA; Osores S; Lardies MA
    J Therm Biol; 2017 Aug; 68(Pt A):14-20. PubMed ID: 28689716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of mitochondrial performance at high temperatures is correlated with upper thermal tolerance among populations of an intertidal copepod.
    Healy TM; Burton RS
    Comp Biochem Physiol B Biochem Mol Biol; 2023; 266():110836. PubMed ID: 36801253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity and local adaptation explain lizard cold tolerance.
    Card DC; Schield DR; Castoe TA
    Mol Ecol; 2018 May; 27(9):2173-2175. PubMed ID: 29737602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline.
    Campbell-Staton SC; Bare A; Losos JB; Edwards SV; Cheviron ZA
    Mol Ecol; 2018 May; 27(9):2243-2255. PubMed ID: 29633453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is there metabolic cold adaptation in terrestrial ectotherms? Exploring latitudinal compensation in the invasive snail Cornu aspersum.
    Gaitán-Espitia JD; Nespolo R
    J Exp Biol; 2014 Jul; 217(Pt 13):2261-7. PubMed ID: 24737770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Countergradient variation in temperature preference in populations of killifish Fundulus heteroclitus.
    Fangue NA; Podrabsky JE; Crawshaw LI; Schulte PM
    Physiol Biochem Zool; 2009; 82(6):776-86. PubMed ID: 19732025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal adaptation in a holobiont accompanied by phenotypic changes in an endosymbiont.
    Salsbery ME; DeLong JP
    Evolution; 2021 Aug; 75(8):2074-2084. PubMed ID: 34192342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.