These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 36521677)
1. Three-dimensional highly porous hydrogel scaffold for neural circuit dissection and modulation. Yan M; Wang L; Wu Y; Wang L; Lu Y Acta Biomater; 2023 Feb; 157():252-262. PubMed ID: 36521677 [TBL] [Abstract][Full Text] [Related]
2. 3D Functional Neuronal Networks in Free-Standing Bioprinted Hydrogel Constructs. Yao Y; Coleman HA; Meagher L; Forsythe JS; Parkington HC Adv Healthc Mater; 2023 Nov; 12(28):e2300801. PubMed ID: 37369123 [TBL] [Abstract][Full Text] [Related]
3. Tissue engineered hydrogels supporting 3D neural networks. Aregueta-Robles UA; Martens PJ; Poole-Warren LA; Green RA Acta Biomater; 2019 Sep; 95():269-284. PubMed ID: 30500450 [TBL] [Abstract][Full Text] [Related]
4. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
5. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
6. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
8. In vitro induction of in vivo-relevant stellate astrocytes in 3D brain-derived, decellularized extracellular matrices. Han S; Kim J; Kim SH; Youn W; Kim J; Ji GY; Yang S; Park J; Lee GM; Kim Y; Choi IS Acta Biomater; 2023 Dec; 172():218-233. PubMed ID: 37788738 [TBL] [Abstract][Full Text] [Related]
9. PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model. Chen M; Feng Z; Guo W; Yang D; Gao S; Li Y; Shen S; Yuan Z; Huang B; Zhang Y; Wang M; Li X; Hao L; Peng J; Liu S; Zhou Y; Guo Q ACS Appl Mater Interfaces; 2019 Nov; 11(44):41626-41639. PubMed ID: 31596568 [TBL] [Abstract][Full Text] [Related]
10. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration. Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Lee SJ; Nowicki M; Harris B; Zhang LG Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
13. A loofah-inspired scaffold with enhanced mimicking mechanics and tumor cells distribution for in vitro tumor cell culture platform. Liu X; Fu S; Jiao Y; Hu M; Li C; Wang F; Wang L Mater Sci Eng C Mater Biol Appl; 2022 Apr; 135():112672. PubMed ID: 35581090 [TBL] [Abstract][Full Text] [Related]
14. Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds. Liu F; Li W; Liu H; Yuan T; Yang Y; Zhou W; Hu Y; Yang Z Macromol Biosci; 2021 Apr; 21(4):e2000398. PubMed ID: 33624936 [TBL] [Abstract][Full Text] [Related]
15. Highly Organized Porous Gelatin-Based Scaffold by Microfluidic 3D-Foaming Technology and Dynamic Culture for Cartilage Tissue Engineering. Liu HW; Su WT; Liu CY; Huang CC Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955581 [TBL] [Abstract][Full Text] [Related]
16. Engineering of brain-like tissue constructs via 3D Cell-printing technology. Song Y; Su X; Firouzian KF; Fang Y; Zhang T; Sun W Biofabrication; 2020 May; 12(3):035016. PubMed ID: 32143204 [TBL] [Abstract][Full Text] [Related]
17. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite. Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091 [TBL] [Abstract][Full Text] [Related]
18. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
20. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling. Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]