These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36521741)
21. A novel slow-release selenium approach for cadmium reduction and selenium enrichment in rice (Oryza sativa L.). Huang P; Yang W; Li Q; Liao Q; Si M; Shi M; Yang Z Chemosphere; 2023 Nov; 342():140183. PubMed ID: 37726061 [TBL] [Abstract][Full Text] [Related]
22. Cd accumulation, biomass and yield of rice are varied with silicon application at different growth phases under high concentration cadmium-contaminated soil. Cai Y; Zhang S; Cai K; Huang F; Pan B; Wang W Chemosphere; 2020 Mar; 242():125128. PubMed ID: 31678846 [TBL] [Abstract][Full Text] [Related]
23. Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil. Huang Q; Xu Y; Liu Y; Qin X; Huang R; Liang X Environ Sci Pollut Res Int; 2018 Nov; 25(31):31175-31182. PubMed ID: 30187416 [TBL] [Abstract][Full Text] [Related]
24. Flag leaf cell wall functional groups and components play a crucial role in the accumulation and translocation of Cd in rice grain via foliage application of humic acid. Deng X; Chen B; Chen Y; Jiang L; Hu Y; Yang Y; Rong X; Peng L; Zeng Q Ecotoxicol Environ Saf; 2022 Jul; 239():113658. PubMed ID: 35598444 [TBL] [Abstract][Full Text] [Related]
25. Cadmium uptake reduction in paddy rice with a combination of water management, soil application of calcium magnesium phosphate and foliar spraying of Si/Se. Cai Y; Wang X; Beesley L; Zhang Z; Zhi S; Ding Y Environ Sci Pollut Res Int; 2021 Sep; 28(36):50378-50387. PubMed ID: 33956320 [TBL] [Abstract][Full Text] [Related]
26. Cross-Talk between Cadmium and Selenium at Elevated Cadmium Stress Determines the Fate of Selenium Uptake in Rice. Farooq MU; Tang Z; Zheng T; Asghar MA; Zeng R; Su Y; Ei HH; Liang Y; Zhang Y; Ye X; Jia X; Zhu J Biomolecules; 2019 Jun; 9(6):. PubMed ID: 31238551 [TBL] [Abstract][Full Text] [Related]
27. Comparative effectiveness of Se translocation between low-Se and high-Se rice cultivars under Se fertilization. Zhang M; Pang Y; Yi Q; Huang J; Huang X; Huang Q; Xu P; Tang S Ecotoxicol Environ Saf; 2020 Dec; 205():111372. PubMed ID: 32977281 [TBL] [Abstract][Full Text] [Related]
28. Synergistic mitigation of cadmium stress in rice (Oryza sativa L.) through combined selenium, calcium, and magnesium supplementation. Arinzechi C; Dong C; Huang P; Zhao P; Liao Q; Li Q; Yang Z Environ Geochem Health; 2024 Sep; 46(11):435. PubMed ID: 39316186 [TBL] [Abstract][Full Text] [Related]
29. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Hussain B; Lin Q; Hamid Y; Sanaullah M; Di L; Hashmi MLUR; Khan MB; He Z; Yang X Sci Total Environ; 2020 Apr; 712():136497. PubMed ID: 31945526 [TBL] [Abstract][Full Text] [Related]
30. Exogenous selenium promotes cadmium reduction and selenium enrichment in rice: Evidence, mechanisms, and perspectives. Huang F; Chen L; Zhou Y; Huang J; Wu F; Hu Q; Chang N; Qiu T; Zeng Y; He H; White JC; Yang W; Fang L J Hazard Mater; 2024 Sep; 476():135043. PubMed ID: 38941835 [TBL] [Abstract][Full Text] [Related]
31. Unveiling the significance of foliar-applied silicon, selenium and phosphorus for the management and remediation of arsenic in two different rice genotypes. Hussain MM; Niazi NK; Bibi I; Ali F; Al-Misned F; Hussain K; Shahid M; Rehman A; Wang H Int J Phytoremediation; 2024 Feb; 26(3):294-303. PubMed ID: 37493366 [TBL] [Abstract][Full Text] [Related]
32. Effectiveness of simultaneous foliar application of Zn and Mn or P to reduce Cd concentration in rice grains: a field study. Lv G; Wang H; Xu C; Shuai H; Luo Z; Zhang Q; Zhu H; Wang S; Zhu Q; Zhang Y; Huang D Environ Sci Pollut Res Int; 2019 Mar; 26(9):9305-9313. PubMed ID: 30719674 [TBL] [Abstract][Full Text] [Related]
33. Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice. Xie L; Hao P; Cheng Y; Ahmed IM; Cao F Ecotoxicol Environ Saf; 2018 Oct; 162():71-76. PubMed ID: 29990741 [TBL] [Abstract][Full Text] [Related]
34. Variations in grain cadmium and arsenic concentrations and screening for stable low-accumulating rice cultivars from multi-environment trials. Chi Y; Li F; Tam NF; Liu C; Ouyang Y; Qi X; Li WC; Ye Z Sci Total Environ; 2018 Dec; 643():1314-1324. PubMed ID: 30189548 [TBL] [Abstract][Full Text] [Related]
35. Comparing the effects of calcium and magnesium ions on accumulation and translocation of cadmium in rice. Li X; Teng L; Fu T; He T; Wu P Environ Sci Pollut Res Int; 2022 Jun; 29(27):41628-41639. PubMed ID: 35094265 [TBL] [Abstract][Full Text] [Related]
36. Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat. Saifullah ; Javed H; Naeem A; Rengel Z; Dahlawi S Environ Sci Pollut Res Int; 2016 Aug; 23(16):16432-9. PubMed ID: 27164881 [TBL] [Abstract][Full Text] [Related]
38. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Gao M; Zhou J; Liu H; Zhang W; Hu Y; Liang J; Zhou J Sci Total Environ; 2018 Aug; 631-632():1100-1108. PubMed ID: 29727936 [TBL] [Abstract][Full Text] [Related]
39. Heavy metal distribution in wheat plant components following foliar Cd application. Liu P; Li L; Ippolito JA; Xing W; Wang Y; Wang Y; Cheng Y; Qiu K Chemosphere; 2023 May; 322():138177. PubMed ID: 36806811 [TBL] [Abstract][Full Text] [Related]
40. Mitigating cadmium exposure risk in rice with foliar nano-selenium: Investigations through Caco-2 human cell line in-vivo bioavailability assay. Hussain B; Yin X; Lin Q; Hamid Y; Usman M; Hashmi ML; Lu M; Imran Taqi M; He Z; Yang XE Environ Pollut; 2024 Sep; 356():124356. PubMed ID: 38866319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]